已知橢圓 的左、右焦點分別是、,是橢圓右準線上的一點,線段的垂直平分線過點.又直線:按向量平移后的直線是,直線:按向量平移后的直線是 (其中)。
(1) 求橢圓的離心率的取值范圍。
(2)當離心率最小且時,求橢圓的方程。
(3)若直線與相交于(2)中所求得的橢圓內(nèi)的一點,且與這個橢圓交于、兩點,與這個橢圓交于、兩點。求四邊形ABCD面積的取值范圍。
(1);(2);(3) .
解析試題分析:(1)要求離心率e的范圍,就要找出含e的不等式.這個不等式從哪里來?
線段的垂直平分線過點,所以,兩邊除以得:,解這個不等式即可得離心率的取值范圍:.(2)由(1)知的最小值為,即.
又因為,這樣便得一個方程組,解這個方程組即可.
(3)據(jù)條件知直線與相互垂直,所以四邊形ABCD的對角線互相垂直,其面積.
求出直線與的方程,聯(lián)立起來解方程組便可得交點P的坐標.因為交戰(zhàn)點P在橢圓內(nèi),據(jù)此可得m的范圍.接下來將直線的方程與橢圓的方程聯(lián)立,再用弦長公式,可得弦AC,再將與橢圓的方程聯(lián)立,可得弦BD,由此可得四邊形ABCD面積與m的函數(shù)關(guān)系式,再用前面求得的m的范圍,就可求出這個函數(shù)式的范圍,即四邊形ABCD面積的取值范圍.
試題解析:(1)設(shè)橢圓的焦距是,則據(jù)條件有
解之得: 3分
(2)據(jù)(1)知,又,得橢圓的方程是
6分
(3)據(jù)條件有
:
: 7分
由 解得
因在橢圓內(nèi),有 9分
又由,消去得
所以
據(jù)對稱性易知 12分
所以 13分
而,所以 14分
考點:1、直線與圓錐曲線的位置關(guān)系;2、函數(shù)的范圍;3、不等關(guān)系.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓經(jīng)過點,離心率為.
(1)求橢圓C的方程:
(2)過點Q(1,0)的直線l與橢圓C相交于A、B兩點,點P(4,3),記直線PA,PB的斜率分別為k1,k2,當k1·k2最大時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點的雙曲線的弦所在的直線方程;
(2)過點(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點,且Q1,Q2兩點的中點為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓的長軸為AB,過點B的直線與
軸垂直,橢圓的離心率,F為橢圓的左焦點,且
(1)求此橢圓的標準方程;
(2)設(shè)P是此橢圓上異于A,B的任意一點, 軸,H為垂足,延長HP到點Q,使得HP=PQ,連接AQ并延長交直線于點,為的中點,判定直線與以為直徑的圓O位置關(guān)系。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左右兩焦點分別為,是橢圓上一點,且在軸上方,.
(1)求橢圓的離心率的取值范圍;
(2)當取最大值時,過的圓的截軸的線段長為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準線上任一點引圓的兩條切線,切點分別為.試探究直線是否過定點?若過定點,請求出該定點;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定點F(2,0)和定直線,動圓P過定點F與定直線相切,記動圓圓心P的軌跡為曲線C
(1)求曲線C的方程.
(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點,且線段AB是此圓的直徑時,求直線AB的方程
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com