A. | [6,22] | B. | [7,22] | C. | [8,22] | D. | [7,23] |
分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y+1≥0}\\{2x-y-3≤0}\end{array}\right.$,作可行域如圖.
由z=3x+2y,結(jié)合圖形可知,當(dāng)直線分別經(jīng)過可行域內(nèi)的點A,B時,目標(biāo)函數(shù)取得最值,
由:$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y-3=0}\end{array}\right.$,可得A(4,5),
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y=3}\end{array}\right.$可得B(1,2)時,
目標(biāo)函數(shù)取得最小值和最大值,
分別為zmax=3×4+2×5=22,zmin=3×1+2×2=7.
目標(biāo)函數(shù)的范圍:[7,22].
故選:B.
點評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2$\sqrt{2}$,+∞) | B. | (-2$\sqrt{2}$,2$\sqrt{2}$) | C. | (-2$\sqrt{2}$,1]∪[2$\sqrt{2}$,+∞) | D. | (-∞,2$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | XA+XB=2XM | B. | XA•XB=X${\;}_{M}^{2}$ | C. | $\frac{1}{{X}_{A}}$+$\frac{1}{{X}_{B}}$=$\frac{2}{{X}_{M}}$ | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若?x≥0,有f(x)<0成立,則a<$\frac{1}{2}$ | B. | 若?x<0,f(x)≥0,則a<$\frac{1}{2}$ | ||
C. | 若?x≥0,都有f(x)<0成立,則a<$\frac{1}{2}$ | D. | 若?x<0,有f(x)<0成立,則a<$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,4] | B. | (0,4) | C. | (4,5) | D. | (0,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 內(nèi)心 | B. | 外心 | C. | 重心 | D. | 垂心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com