【題目】已知向量 和 ,其中 , ,k∈R.
(1)當k為何值時,有 ∥ ;
(2)若向量 與 的夾角為鈍角,求實數(shù)k的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】為考察高中生的性別與是否喜歡數(shù)學課程之間的關系,在某城市的某校高中生中,從男生中隨機抽取了70人,從女生中隨機抽取了50人,男生中喜歡數(shù)學課程的占,女生中喜歡數(shù)學課程的占,得到如下列聯(lián)表.
喜歡數(shù)學課程 | 不喜歡數(shù)學課程 | 合計 | |
男生 | |||
女生 | |||
合計 |
(1)請將列聯(lián)表補充完整;試判斷能否有90%的把握認為喜歡數(shù)學課程與否與性別有關;
(2)從不喜歡數(shù)學課程的學生中采用分層抽樣的方法,隨機抽取6人,現(xiàn)從6人中隨機抽取2人,求抽取的學生中至少有1名是女生的概率..
附:,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C: (a>b>0)的離心率為,且過點(1, ).過橢圓C的左頂點A作直線交橢圓C于另一點P,交直線l:x=m(m>a)于點M.已知點B(1,0),直線PB交l于點N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若MB是線段PN的垂直平分線,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=﹣ x3+ x2+2ax.
(1)當a=1時,求f(x)在[1,4]上的最大值和最小值.
(2)若f (x)在( ,+∞)上存在單調遞增區(qū)間,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個多面體的直觀圖(圖1)及三視圖(圖2)如圖所示,其中M,N分別是AF,BC的中點
(1)求證:MN∥平面CDEF:
(2)求二面角A﹣CF﹣B的余弦值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為拋物線的焦點,點在拋物線上,且.
(1)求拋物線的方程;
(2)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a為實數(shù),函數(shù)f(x)=ex﹣2x+2a,x∈R.
(1)求f(x)的單調區(qū)間及極值;
(2)求證:當a>ln2﹣1且x>0時,ex>x2﹣2ax+1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com