【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=ex﹣2x+2a,x∈R.
(1)求f(x)的單調(diào)區(qū)間及極值;
(2)求證:當(dāng)a>ln2﹣1且x>0時(shí),ex>x2﹣2ax+1.
【答案】(Ⅰ)f(x)的單調(diào)遞減區(qū)間是(-∞,ln2),單調(diào)遞增區(qū)間是(ln2,+∞),極小值為f(ln2)=eln2-2ln2+2a=2(1-ln2+a);(Ⅱ)求證:當(dāng)a>ln2-1且x>0時(shí),ex>x2-2ax+1.
【解析】試題分析:(1)由,知.令,得.列表討論能求出的單調(diào)區(qū)間區(qū)間及極值.
(2)設(shè),于是,由(1)知當(dāng)時(shí),最小值為,于是對(duì)任意,都有,所以在內(nèi)單調(diào)遞增.由此能夠證明.
試題解析:解:∵f(x)=ex﹣2x+2a,x∈R,
∴f′(x)=ex﹣2,x∈R.
令f′(x)=0,得x=ln2.
于是當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
故f(x)的單調(diào)遞減區(qū)間是(﹣∞,ln2),
單調(diào)遞增區(qū)間是(ln2,+∞),
f(x)在x=ln2處取得極小值,
極小值為f(ln2)=eln2﹣2ln2+2a=2(1﹣ln2+a),無極大值.
(2)證明:設(shè)g(x)=ex﹣x2+2ax﹣1,x∈R,
于是g′(x)=ex﹣2x+2a,x∈R.
由(1)知當(dāng)a>ln2﹣1時(shí),
g′(x)最小值為g′(ln2)=2(1﹣ln2+a)>0.
于是對(duì)任意x∈R,都有g′(x)>0,所以g(x)在R內(nèi)單調(diào)遞增.
于是當(dāng)a>ln2﹣1時(shí),對(duì)任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,從而對(duì)任意x∈(0,+∞),g(x)>0.
即ex﹣x2+2ax﹣1>0,
故ex>x2﹣2ax+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 和 ,其中 , ,k∈R.
(1)當(dāng)k為何值時(shí),有 ∥ ;
(2)若向量 與 的夾角為鈍角,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F(xiàn)分別在邊AB,AD上,AE=AF=4,現(xiàn)將△AEF沿線段EF折起到△A′EF位置,使得A′C=2 .
(1)求五棱錐A′﹣BCDFE的體積;
(2)求平面A′EF與平面A′BC的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌汽車4s店對(duì)最近100位采用分期付款的購(gòu)車者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如表所示:
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
頻數(shù) | 40 | 20 | a | 10 | b |
已知分3期付款的頻率為0.2,4s店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤(rùn)為1萬元,分2期或3期付款其利潤(rùn)為1.5萬元,分4期或5期付款,其利潤(rùn)為2萬元,用Y表示經(jīng)銷一輛汽車的利潤(rùn).
(1)求上表中a,b的值.
(2)若以頻率作為概率,求事件A:“購(gòu)買該品牌汽車的3位顧客中,至多有一位采用3期付款”的概率P(A)
(3)求Y的分布列及數(shù)學(xué)期望EY.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,摩天輪的半徑OA為,它的最低點(diǎn)A距地面的高度忽略不計(jì).地面上有一長(zhǎng)度為的景觀帶MN,它與摩天輪在同一豎直平面內(nèi),且.點(diǎn)P從最低點(diǎn)A處按逆時(shí)針方向轉(zhuǎn)動(dòng)到最高點(diǎn)B處,記.
(Ⅰ)當(dāng)時(shí),求點(diǎn)P距地面的高度PQ;
(Ⅱ)設(shè),寫出用表示y的函數(shù)關(guān)系式,并求y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為x,第二次出現(xiàn)的點(diǎn)數(shù)為y.
(1)求事件“x+y≤3”的概率;
(2)求事件“|x﹣y|=2”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某港灣的平面示意圖如圖所示, , , 分別是海岸線上的三個(gè)集鎮(zhèn), 位于的正南方向6km處, 位于的北偏東方向10km處.
(Ⅰ)求集鎮(zhèn), 間的距離;
(Ⅱ)隨著經(jīng)濟(jì)的發(fā)展,為緩解集鎮(zhèn)的交通壓力,擬在海岸線上分別修建碼頭,開辟水上航線.勘測(cè)時(shí)發(fā)現(xiàn):以為圓心,3km為半徑的扇形區(qū)域?yàn)闇\水區(qū),不適宜船只航行.請(qǐng)確定碼頭的位置,使得之間的直線航線最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人投籃命中的概率為別為 與 ,各自相互獨(dú)立,現(xiàn)兩人做投籃游戲,共比賽3局,每局每人各投一球.
(1)求比賽結(jié)束后甲的進(jìn)球數(shù)比乙的進(jìn)球數(shù)多1個(gè)的概率;
(2)設(shè)ξ表示比賽結(jié)束后,甲、乙兩人進(jìn)球數(shù)的差的絕對(duì)值,求ξ的概率分布和數(shù)學(xué)期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:m),修建此矩形場(chǎng)地圍墻的總費(fèi)用為y(單位:元). (Ⅰ)將y表示為x的函數(shù):
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com