設(shè)在12個(gè)同類(lèi)型的零件中有2個(gè)次品,抽取3次進(jìn)行檢驗(yàn),每次抽取一個(gè),并且取出不再放回,若以ξ表示取出次品的個(gè)數(shù),則ξ的期望值E(ξ)=
 
考點(diǎn):離散型隨機(jī)變量的期望與方差
專(zhuān)題:概率與統(tǒng)計(jì)
分析:由題意ξ的所有可能取值為0,1,2.由12個(gè)同類(lèi)型的零件中有2個(gè)次品,抽取3次進(jìn)行檢驗(yàn),每次抽取一個(gè),并且取出不再放回,可有
A
3
12
中抽法,其中若抽出的都是正品則有
A
3
10
中抽法;其中有一個(gè)次品和兩個(gè)正品的抽法為
C
1
2
C
2
10
A
3
3
種;其中有兩個(gè)次品和一個(gè)正品的抽法
C
2
2
C
1
10
A
3
3
種,利用古典概型的概率計(jì)算公式和數(shù)學(xué)期望的計(jì)算公式即可得出.
解答: 解:由題意ξ的所有可能取值為0,1,2.
由12個(gè)同類(lèi)型的零件中有2個(gè)次品,抽取3次進(jìn)行檢驗(yàn),每次抽取一個(gè),并且取出不再放回,可有
A
3
12
中抽法,其中若抽出的都是正品則有
A
3
10
中抽法,故P(ξ=0)=
A
3
10
A
3
12
=
6
11
;
其中有一個(gè)次品和兩個(gè)正品的抽法為
C
1
2
C
2
10
A
3
3
種,故P(ξ=1)=
C
2
10
C
1
2
A
3
3
A
3
12
=
9
22

其中有兩個(gè)次品和一個(gè)正品的抽法
C
2
2
C
1
10
A
3
3
種,故P(ξ=2)
C
2
2
C
1
10
A
3
3
A
3
12
=
1
22

其分布列如表:
∴E(ξ)=
6
11
+1×
9
22
+2×
1
22
=
1
2

故答案為
1
2
點(diǎn)評(píng):熟練掌握分類(lèi)討論的思想方法、排列與組合的計(jì)算公式、古典概型的概率計(jì)算公式、隨機(jī)變量的分布列、數(shù)學(xué)期望是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)的圖象與y=2x的圖象關(guān)于x軸對(duì)稱(chēng),則f(x)的表達(dá)式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某電視合為提升收視率,推出大型明星跳水競(jìng)技節(jié)目《星跳水立方》.由4位奧運(yùn)跳水冠軍薩烏丁、熊倪、高敏、胡佳任教練,分別帶領(lǐng)一個(gè)隊(duì)進(jìn)行競(jìng)賽,參加競(jìng)賽的隊(duì)伍按照抽簽方式?jīng)Q定出場(chǎng)順序.
(I)求競(jìng)賽中薩烏丁隊(duì)、熊倪隊(duì)兩支隊(duì)伍恰好排在前兩位的概率;
(Ⅱ)若競(jìng)賽中薩烏丁隊(duì)、熊倪隊(duì)之間間隔的隊(duì)伍數(shù)記為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,曲線(xiàn)C1和C2的參數(shù)方程分別為sinθ+cosθ=
3
ρ
,ρ=2cosθ
,若點(diǎn)P(x,y)為C2對(duì)應(yīng)直角坐標(biāo)系中圖形上一點(diǎn),點(diǎn)A為C1對(duì)應(yīng)直角坐標(biāo)系中圖形上一點(diǎn),則|PA|最小值=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題
(1)(矩陣與變換選做題)已知矩陣M=
10
02
,曲線(xiàn)y=sinx在矩陣MN對(duì)應(yīng)的變換作用下得到曲線(xiàn)C,則C的方程是
 

(2)(極坐標(biāo)與參數(shù)方程選做題)在極坐標(biāo)系中,點(diǎn)(2,
π
2
)到直線(xiàn)ρsin(θ+
π
4
)+
2
=0
的距離是
 

(3)(不等式選講選做題)若關(guān)于x的不等式|x-1|-|x+2|≥a的解集為R,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2-5x+4=0},B={x|x2-ax+(a-1)=0},C={x|x2-mx+4=0},若A∪B=A,A∩C=C,求實(shí)數(shù)a,m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方形ABCD中,AB=2,BC=1,E為CD的中點(diǎn),F(xiàn)為AE的中點(diǎn).現(xiàn)在沿AE將三角形ADE向上折起,在折起的圖形中解答下列兩問(wèn):

(Ⅰ)在線(xiàn)段AB上是否存在一點(diǎn)K,使BC∥面DFK?若存在,請(qǐng)證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由;
(Ⅱ)若面ADE⊥面ABCE,求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是R上的奇函數(shù),且滿(mǎn)足f(x+2)=-f(x),當(dāng)x∈(0,2)時(shí),f(x)=3x,則f(1)+f(2)+f(3)+…+f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=25,圓O1的圓心為O1(m,0)且與圓O交于點(diǎn)P(3,4),過(guò)點(diǎn)P且斜率為(k≠0)的直線(xiàn)l分別交圓O,O1于點(diǎn)A,B.
(1)若k=1,且BP=7
2
,求圓O1的方程;
(2)過(guò)點(diǎn)P作垂直于直線(xiàn)l的直線(xiàn)l1分別交圓O,O1于點(diǎn)C,D.當(dāng)m為常數(shù)時(shí),試判斷AB2+CD2是否是定值?若是定值,求出這個(gè)值;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案