(文做)函數(shù)f(x)=(x-1)(x-2)+(x-2)(x-3)+(x-3)(x-1)的兩個零點分別位于區(qū)間(  )
A、(2,3)和(3,+∞)內(nèi)
B、(-∞,1)和(1,2)內(nèi)
C、(1,2)和(2,3)內(nèi)
D、(-∞,1)和(3,+∞)內(nèi)
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的零點存在性原理,只要將區(qū)間端點代入解析式使函數(shù)值的符號相反即可.
解答: 解:由已知,f(2)=-1<0,f(3)=2>0,f(1)=2>0,
根據(jù)函數(shù)零點存在性定理可得,函數(shù)的零點分別在(2,3)和(1,2)內(nèi);
故選C.
點評:本題考查了函數(shù)零點的判斷,關(guān)鍵函數(shù)零點存在性定理,只要區(qū)間端點的函數(shù)值符號相反即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,-
3
),
b
=(2,0),則|
a
+
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)f(x)滿足f(x)=f(2-x)且已知f(5)=3,則f(-1)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩位老師和兩位同學(xué)站成一排合影,則兩位老師至少有一人站在兩端的概率是( 。
A、
5
6
B、
1
6
C、
1
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理做)如圖所示,函數(shù)y=f(x)的圖象由兩條射線和三條線段組成,若?x∈R,f(x)>f(x-2),則正實數(shù)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是R上的奇函數(shù),且對任意的實數(shù)a,b,當(dāng)a+b≠0時,都有
f(a)+f(b)
a+b
>0.
(1)若a>b,試比較f(a),f(b)的大;
(2)若存在實數(shù)x∈[
1
2
,
3
2
],使得不等式f(x-c2)>0成立,試求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn(n∈N*),關(guān)于數(shù)列{an}有下列命題:
①若{an}既是等差數(shù)列又是等比數(shù)列,則Sn=nan(n∈N*);
②若Sn=an2+bn(a,b∈R),則{an}是等差數(shù)列;
③若Sn=3n+1,則{an}是等比數(shù)列;
④若{an}是等比數(shù)列,則Sm,S2m-Sm,S3m-S2m(m∈N*)也成等比數(shù)列;
⑤若{an}是公比為q的等比數(shù)列,且Sm,2Sm+1,3Sm+2(m∈N*)成等差數(shù)列,則3q-1=0.
其中正確的命題是
 
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線:3x+4y=10與圓C:x2+y2=12,交于A、B兩點,則線段AB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈(0,1),則
x2+y2
+
x2+(y-1)2
+
(x-1)2+y2
+
(x-1)2+(y-1)2
的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案