【題目】如圖,在四棱錐底面為直角,,,分別為的中點(diǎn).

(1)試證:平面;

(2)求與平面所成角的大;

(3)求三棱錐的體積.

【答案】(1)證明見解析;(2);(3).

【解析】

1)易證得四邊形為矩形,從而;利用線面垂直性質(zhì)可證得,進(jìn)而得到平面,由線面垂直性質(zhì)得,由平行關(guān)系得,由線面垂直判定定理證得結(jié)論;(2)由(1)可知即為所求角;根據(jù)四邊形為矩形可得到長(zhǎng)度關(guān)系,從而得到,進(jìn)而得到結(jié)果;(3)利用體積橋可知,利用三棱錐體積公式計(jì)算可得結(jié)果.

1為直角,

四邊形為矩形

平面平面

,平面 平面

平面

分別為中點(diǎn)

平面 平面

2)由(1)知,在平面內(nèi)的射影為

即為直線與平面所成角

四邊形為矩形

中,

即直線與平面所成角大小為:

(3),又中點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如表所示:

積極參加班級(jí)工作

不積極參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計(jì)

24

26

50

(1)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?

(2)若不積極參加班級(jí)工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取2名學(xué)生參加某項(xiàng)活動(dòng),問2名學(xué)生中有1名男生的概率是多少?

(3)學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?請(qǐng)說明理由.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求的零點(diǎn)個(gè)數(shù);

2)若,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某房產(chǎn)中介公司2017年9月1日正式開業(yè),現(xiàn)對(duì)其每個(gè)月的二手房成交量進(jìn)行統(tǒng)計(jì),表示開業(yè)第個(gè)月的二手房成交量,得到統(tǒng)計(jì)表格如下:

(1)統(tǒng)計(jì)中常用相關(guān)系數(shù)來(lái)衡量?jī)蓚(gè)變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計(jì)學(xué)認(rèn)為,對(duì)于變量,如果,那么相關(guān)性很強(qiáng);如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱.通過散點(diǎn)圖初步分析可用線性回歸模型擬合的關(guān)系.計(jì)算的相關(guān)系數(shù),并回答是否可以認(rèn)為兩個(gè)變量具有很強(qiáng)的線性相關(guān)關(guān)系(計(jì)算結(jié)果精確到0.01)

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(計(jì)算結(jié)果精確到0.01),并預(yù)測(cè)該房產(chǎn)中介公司2018年6月份的二手房成交量(計(jì)算結(jié)果四舍五入取整數(shù)).

參考數(shù)據(jù):,,,,.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,,分別交軸于,兩點(diǎn),為坐標(biāo)原點(diǎn),則的面積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:

①動(dòng)點(diǎn)M到二定點(diǎn)A、B的距離之比為常數(shù)則動(dòng)點(diǎn)M的軌跡是圓

②橢圓的離心率為,則

③雙曲線的焦點(diǎn)到漸近線的距離是

④已知拋物線上兩點(diǎn)(是坐標(biāo)原點(diǎn)),則

以上命題正確的是( )

A.②③④B.①④

C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論錯(cuò)誤的是( 。

A. 命題“若p,則q”與命題“若¬q,則¬p”互為逆否命題

B. 命題p,命題q,,則“”為真

C. “若,則”的逆命題為真命題

D. 命題P:“,使得”的否定為¬P:“

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)為定義在R上的偶函數(shù),且0≤x≤2時(shí),yx;當(dāng)x2時(shí),yf(x)的圖象是頂點(diǎn)為P(3,4)且過點(diǎn)A(2,2)的拋物線的一部分.

(1)求函數(shù)f(x)(,-2)上的解析式;

(2)寫出函數(shù)f(x)的值域和單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案