A. | $({-∞,-\frac{3}{2}})$ | B. | $({-∞,-\frac{3}{4}})$ | C. | $({-\frac{3}{4},+∞})$ | D. | $({-\frac{3}{2},+∞})$ |
分析 根據(jù)圓的性質(zhì),得直線x=ky-1與直線y=x垂直且圓心C(-$\frac{k}{2}$,-$\frac{m}{2}$)在直線y=x上,由此解出k=m=-1,從而得到直線和圓的方程,再由圓心C到直線的距離小于半徑,利用點(diǎn)到直線的距離公式即可算出實(shí)數(shù)p的取值范圍.
解答 解:∵直線x=ky-1與圓C相交,且兩個(gè)交點(diǎn)關(guān)于直線y=x對(duì)稱,
∴圓心C(-$\frac{k}{2}$,-$\frac{m}{2}$)在直線y=x上,可得m=k
∵直線x=ky-1與直線y=x垂直,∴k=m=-1
得直線方程x=-y-1即x+y+1=0,
圓C:x2+y2-x-y+p=0,圓心C($\frac{1}{2}$,$\frac{1}{2}$),半徑R=$\sqrt{\frac{1}{2}-p}$
∵直線x+y+1=0與圓C相交,
∴$\frac{|\frac{1}{2}+\frac{1}{2}+1|}{\sqrt{2}}$<$\sqrt{\frac{1}{2}-p}$,解之得p<-$\frac{3}{2}$,
即實(shí)數(shù)p的取值范圍是(-∞,-$\frac{3}{2}$).
故選A.
點(diǎn)評(píng) 本題給出直線與圓相交且交點(diǎn)關(guān)于直線y=x對(duì)稱,求參數(shù)p的取值范圍,著重考查了點(diǎn)到直線的距離公式、直線與圓的方程、直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{O{G_1}}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$ | B. | $\overrightarrow{O{G_1}}=\frac{1}{9}\overrightarrow{OA}+\frac{1}{9}\overrightarrow{OB}+\frac{1}{9}\overrightarrow{OC}$ | ||
C. | $\overrightarrow{O{G_1}}=\frac{1}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$ | D. | $\overrightarrow{O{G_1}}=\frac{3}{4}\overrightarrow{OA}+\frac{3}{4}\overrightarrow{OB}+\frac{3}{4}\overrightarrow{OC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{5}$ | D. | $\frac{\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | [-1,1] | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com