10.設(shè)x∈R,則“|x-2|<1”是“x2-2x-8<0”的( 。
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

分析 分別解出不等式,利用充要條件的判定方法即可得出.

解答 解:由|x-2|<1,解得-1<x<3.
由x2-2x-8<0,解得-2<x<4.
∴“|x-2|<1”是“x2-2x-8<0”的充分不必要條件.
故選:B.

點(diǎn)評 本題考查了不等式、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分別為邊AC,AB的中點(diǎn),點(diǎn)F,G分別為線段CD,BE的中點(diǎn).將△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.點(diǎn)Q為線段A1B上的一點(diǎn),如圖2.

(Ⅰ)求證:A1F⊥BE;
(Ⅱ)線段A1B上是否存在點(diǎn)Q£?使得FQ∥平面A1DE?若存在,求出A1Q的長,若不存在,請說明理由;
(Ⅲ)當(dāng)$\overrightarrow{{A_1}Q}=\frac{3}{4}\overrightarrow{{A_1}B}$時(shí),求直線GQ與平面A1DE所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若x,y滿足:$\left\{\begin{array}{l}{x+2y-19≥0}\\{x-y+8≥0}\\{2x+y-14≤0}\end{array}\right.$,則z=$\frac{y+1}{x+1}$的最大值與最小值之和為( 。
A.$\frac{25}{4}$B.$\frac{27}{4}$C.$\frac{29}{4}$D.$\frac{31}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.閱讀右邊的程序框圖,運(yùn)行相應(yīng)程序,輸出s的值為87.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=$\frac{({a}_{n}+1)^{2}}{4}$(n∈N*)
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(-1)nan+(-1)nan2,求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.i是虛數(shù)單位,復(fù)數(shù)z=$\frac{2-i}{1+2i}$,則z的共軛復(fù)數(shù)$\overline{z}$=i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為$\frac{1}{2}$,上頂點(diǎn)與右焦點(diǎn)的距離為2,
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線y=kx+2與橢圓C交于A.B兩點(diǎn),點(diǎn)D(t,0)滿足|DA|=|DB|,且t∈[-$\frac{\sqrt{3}}{6}$,-$\frac{1}{4}$],求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在3000與8000之間,有多少個(gè)沒有重復(fù)數(shù)字的:
(1)四位偶數(shù);
(2)能被5整除的四位奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.給出下列命題
①函數(shù)f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)的圖象關(guān)于x=π對稱的圖象的函數(shù)解析式為y=sin($\frac{x}{2}$-$\frac{π}{6}$);
②函數(shù)f(x)=$\sqrt{x-1}$+$\frac{1}{x}$在定義域上是增函數(shù);
③函數(shù)f(x)=|log2x|-($\frac{1}{2}$)x在(0,+∞)上恰有兩個(gè)零點(diǎn)x1,x2,且x1x2<1.
其中真命題的個(gè)數(shù)有(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案