10.已知A,B,C三點(diǎn)在曲線$y=\sqrt{x}$上,其橫坐標(biāo)依次為1,m,4(1<m<4),當(dāng)△ABC的面積最大時(shí),m的值為( 。
A.$\frac{9}{4}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.3

分析 求出A、B、C三點(diǎn)的坐標(biāo),求出AC的方程,利用點(diǎn)到直線的距離公式求出三角形的高,推出面積的表達(dá)式,然后求解面積的最大值時(shí)的m值.

解答 解:由題意知,A(1,1),B(m,$\sqrt{m}$),C(4,2),
直線AC所在方程為x-3y+2=0,
點(diǎn)B到該直線的距離為d=$\frac{|m-3\sqrt{m}+2|}{\sqrt{10}}$,
S△ABC=$\frac{1}{2}$|AC|•d=$\frac{1}{2}$•$\sqrt{10}$•$\frac{|m-3\sqrt{m}+2|}{\sqrt{10}}$=$\frac{1}{2}$|m-3$\sqrt{m}$+2|=$\frac{1}{2}$|($\sqrt{m}$-$\frac{3}{2}$)2-$\frac{1}{4}$|
∵m∈(1,4),
∴當(dāng)$\sqrt{m}$=$\frac{3}{2}$時(shí),S△ABC有最大值,此時(shí)m=$\frac{9}{4}$.
故選A.

點(diǎn)評(píng) 本題考查點(diǎn)到直線的距離公式的應(yīng)用,三角形的面積的最值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線C:x2=2py(p>0)的焦點(diǎn)為F,過直線x-y-2=0上點(diǎn)M作C的兩條切線MA、MB(A、B為切點(diǎn)),若|AF|•|BF|的最小值為8,則p=(  )
A.1B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在一個(gè)盒子中,放有標(biāo)號(hào)分別為1,2,3的三張卡片,現(xiàn)從這個(gè)盒子中,有放回地先后抽得兩張卡片的標(biāo)號(hào)分別為x,y,記X=|x-2|+|y-x|,
(1)求隨機(jī)變量X的分布列;
(2)求數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.十進(jìn)制的數(shù)29用二進(jìn)制數(shù)表示( 。
A..11110B.11101C.10100D.10111

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.直線x+2y-4=0的斜率為( 。
A.1B.$\frac{1}{2}$C.$-\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)若f(x)=-$\frac{1}{2}$x2+bln(x+2)在(-1,+∞)上是減函數(shù),求b的取值范圍;
(2)已知函數(shù)f(x)=x3-ax2+x,a∈R.若函數(shù)f(x)在區(qū)間(1,2]內(nèi)存在單調(diào)遞增區(qū)間,求a的取值范圍;
(3)已知函數(shù)f(x)=x3-ax2-a2x+3(a<0),若函數(shù)f(x)在區(qū)間(-2,-1)內(nèi)是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$,$\overrightarrow$=(1-n)$\overrightarrow{{e}_{1}}$+3n$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}$∥$\overrightarrow$,則n的值為$-\frac{4}{5}$或n∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.以下是某次考試中某班10名同學(xué)的數(shù)學(xué)成績(單位:分)82,120,97,65,130,115,98,107,77,89.要求將90分以上的同學(xué)的平均分求出來.畫出算法框圖,并寫出程序語句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,且當(dāng)x∈(-∞,0)時(shí),f(x)+x•f'(x)<0成立.已知a=(20.2)•f(20.2),b=(logπ3)•f(logπ3),c=(log39)•f(log39),則a、b、c的大小關(guān)系是b>a>c.

查看答案和解析>>

同步練習(xí)冊(cè)答案