3.在焦距為2c的橢圓$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中,F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則“b<c”是“橢圓M上至少存在一點(diǎn)P,使得PF1⊥PF2”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 求出橢圓M上至少存在一點(diǎn)P,使得PF1⊥PF2的等價(jià)條件,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:若橢圓M上至少存在一點(diǎn)P,使得PF1⊥PF2,
則橢圓與半徑R=c的圓滿足條件.R≥b,
即b≤c,
則b<c”是“橢圓M上至少存在一點(diǎn)P,
使得PF1⊥PF2”的充分不必要條件,
故選:A

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,利用橢圓的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點(diǎn)A的坐標(biāo)為(4,1),點(diǎn)B(-7,-2)關(guān)于直線y=x的對稱點(diǎn)為C.
(Ⅰ)求以A、C為直徑的圓E的方程;
(Ⅱ)設(shè)經(jīng)過點(diǎn)A的直線l與圓E的另一個(gè)交點(diǎn)為D,|AD|=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,O∈AD,AD∥BC,AB⊥AD,AO=AB=BC=1,PO=$\sqrt{2}$,$PC=\sqrt{3}$.
(Ⅰ)證明:平面POC⊥平面PAD;
(Ⅱ)若AD=2,PA=PD,求CD與平面PAB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐V-ABCD的底面是直角梯形,VA⊥面ABCD,AD∥BC,AD⊥CD,VA=AD=CD=$\frac{1}{2}$BC=a,點(diǎn)E是棱VA上不同于A,V的點(diǎn).
(1)求證:無論點(diǎn)E在VA如何移動(dòng)都有AB⊥CE;
(2)設(shè)二面角A-BE-D的大小為α,直線VC與平面ABCD所成的角為β,試確定點(diǎn)E的位置使$tanαtanβ=\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知全集U=R,集合A={x|x2>1},那么∁UA=(  )
A.[-1,1]B.[1,+∞)C.(-∞,1]D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在矩形ABCD中,AB=2,BC=1,那么$\overrightarrow{AC}•\overrightarrow{AB}$=4;若E為線段AC上的動(dòng)點(diǎn),則$\overrightarrow{AC}•\overrightarrow{BE}$的取值范圍是[-4,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)全集U={1,2,3,4,5,6},A={3,4},B={2,4,5},則(∁UA)∩B=( 。
A.{1,2,4,5,6}B.{2,3,4,5}C.{2,5}D.{1,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)i(2-i)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為( 。
A.(-2,1)B.(2,-1)C.(1,2)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.甲、乙、丙分別從A,B,C,D四道題中獨(dú)立地選做兩道題,其中甲必選B題.
(1)求甲選做D題,且乙、丙都不選做D題的概率;
(2)設(shè)隨機(jī)變量X表示D題被甲、乙、丙選做的次數(shù),求X的概率分布和數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊答案