在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,點,直線的極坐標(biāo)方程為.
(1)判斷點與直線l的位置關(guān)系,說明理由;
(2)設(shè)直線與曲線C的兩個交點為A、B,求的值.
(1)點在直線上;(2)8.
解析試題分析:(1)根據(jù)極坐標(biāo)方程求出l的直角坐標(biāo)系方程,將點P代入,即可得到結(jié)果;
(2)求出曲線C的直角坐標(biāo)方程,將直線l的參數(shù)方程代入曲線C的方程,利用韋達(dá)定理即可求出結(jié)果.
解:(1)直線即
所以直線的直角坐標(biāo)方程為,故點在直線上. 5分
(2)直線的參數(shù)方程為(為參數(shù)),
曲線C的直角坐標(biāo)方程為
將直線的參數(shù)方程代入曲線C的直角坐標(biāo)方程,
有 9分
設(shè)兩根為, 12分 .
考點:1.參數(shù)方程;2.簡單曲線的極坐標(biāo)方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.
(1)寫出曲線的普通方程,并說明它表示什么曲線;
(2)過點作傾斜角為的直線與曲線相交于兩點,求線段的長度和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在平面直角坐標(biāo)系中,圓的方程為.以原點為極點,以軸正半軸為極軸,且與直角坐標(biāo)系取相同的單位長度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程和圓的參數(shù)方程;
(2)求圓上的點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是半徑為1的圓的一條直徑,C是此圓上任意一點,作射線AC,在AC上存在點P,使得AP·AC=1,以A為極點,射線AB為極軸建立極坐標(biāo)系.
(1)求以AB為直徑的圓的極坐標(biāo)方程;
(2)求動點P的軌跡的極坐標(biāo)方程;
(3)求點P的軌跡在圓內(nèi)部分的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
長為3的線段兩端點A,B分別在x軸正半軸和y軸的正半軸上滑動,,點P的軌跡為曲線C.
(1)以直線AB的傾斜角為參數(shù),求曲線C的參數(shù)方程;
(2)求點P到點距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同單位長度.已知曲線過點的直線的參數(shù)方程為(t為參數(shù)). (1)求曲線C與直線 的普通方程;(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,若直線 與曲線相切,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2.正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標(biāo)為,
(1)求點A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(θ為參數(shù)),試求直線l與曲線C的普通方程,并求出它們的公共點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com