16.設(shè)a,b,c∈R,且a>b,則(  )
A.ac>bcB.a-c<b-cC.a2>b2D.a3>b3

分析 舉特殊值判斷A,C,根據(jù)不等式的性質(zhì)判斷C,根據(jù)冪函數(shù)的性質(zhì)判斷D

解答 解:A.當(dāng)c=0時,不成立;
B.根據(jù)不等式性質(zhì),則不成立;
C.取a=1,b=-2,則a2>b2不成立;
D.根據(jù)冪函數(shù)y=x3為增函數(shù),可得成立
故選:D.

點(diǎn)評 本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在平面直角坐標(biāo)系中,240°角的終邊與單位圓的交點(diǎn)坐標(biāo)是(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)化簡:$\frac{sin(π-α)cos(3π-α)tan(-α-π)tan(α-2π)}{tan(4π-α)sin(5π+a)}$
(2)化簡:$\frac{{sin({{540}^0}-x)}}{{tan({{900}^0}-x)}}•\frac{1}{{tan({{450}^0}-x)tan({{810}^0}-x)}}•\frac{{cos({{360}^0}-x)}}{sin(-x)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知cosα=1,則sin(α-$\frac{π}{6}$)=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若一條直線過A(1,3)、B(2,5)兩點(diǎn),則此直線的斜率為( 。
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)a,b,c∈R,且a>b,則(  )
A.ac>bcB.$\frac{1}{a}$<$\frac{1}$C.a2>b2D.a-c>b-c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若一個球的半徑為1,則它的表面積是( 。
A.B.C.πD.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如表是x與y之間的一組數(shù)據(jù),則y關(guān)于x的回歸方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$必過點(diǎn)(1.5,4).
x 0
 y 1 2.5 5.57

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)$f(x)=asinx-\frac{{3\sqrt{3}}}{2}cosx+2$,且$f(\frac{π}{2})=\frac{7}{2}$,則函數(shù)f(x)的一條對稱軸的方程為(  )
A.$x=\frac{2π}{3}$B.$x=\frac{π}{3}$C.$x=\frac{5π}{6}$D.$x=\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊答案