6.在平面直角坐標(biāo)系中,240°角的終邊與單位圓的交點(diǎn)坐標(biāo)是(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).

分析 根據(jù)角240°的終邊與單位圓的交點(diǎn)的橫坐標(biāo)是cos240°、角240°的終邊與單位圓的交點(diǎn)的縱坐標(biāo)是sin240°,即可求出角240°的終邊與單位圓的交點(diǎn)的坐標(biāo).

解答 解:由于角240°的終邊與單位圓的交點(diǎn)的橫坐標(biāo)是cos240°=-$\frac{1}{2}$,
 由于角240°的終邊與單位圓的交點(diǎn)的縱坐標(biāo)是sin240°=-$\frac{\sqrt{3}}{2}$,
∴角240°的終邊與單位圓的交點(diǎn)的坐標(biāo)是(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),
故答案為(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,矩形公園OABC中,OA=2km,OC=1km,公園的左下角陰影部分為以O(shè)為圓心,半徑為1km的$\frac{1}{4}$圓面的人工湖,現(xiàn)計(jì)劃修建一條與圓相切的觀光道路EF(點(diǎn)E、F分別在邊OA與BC上),D為切點(diǎn).
(1)試求觀光道路EF長(zhǎng)度的最大值;
(2)公園計(jì)劃在道路EF右側(cè)種植草坪,試求草坪ABFE面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)求與雙曲線(xiàn)$\frac{x^2}{9}-\frac{y^2}{4}=1$共漸近線(xiàn),且過(guò)點(diǎn)(3,4)的雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右焦點(diǎn)的直線(xiàn)$x+y-\sqrt{3}=0$交M于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),P為AB的中點(diǎn),且OP的斜率為$\frac{1}{2}$,求橢圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若關(guān)于x的不等式xex-ax+a<0的解集為(m,n)(n<0),且(m,n)中只有一個(gè)整數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.$(\frac{2}{{3{e^2}}},\frac{1}{e})$B.$[\frac{2}{{3{e^2}}},\frac{1}{e})$C.$(\frac{2}{{3{e^2}}},\frac{1}{2e})$D.$[\frac{2}{{3{e^2}}},\frac{1}{2e})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|x-2|
(1)解不等式:f(x+1)+f(x+3)<4;
(2)已知a>2,求證:?x∈R,f(ax)+af(x)>2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)=$\frac{sinx}{(x-a)(x+1)}$是奇函數(shù),則實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知實(shí)數(shù)a為常數(shù),函數(shù)f(x)=a•4x-2x+1.
(1)已知a=$\frac{1}{2}$,求函數(shù)f(x)的值域;
(2)如果函數(shù)y=f(x)在(0,1)內(nèi)有唯一零點(diǎn),求實(shí)數(shù)a的范圍;
(3)若函數(shù)f(x)是減函數(shù),求證:a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)$y=\frac{1}{10}{x^2}+cosx$,則函數(shù)的導(dǎo)數(shù)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)a,b,c∈R,且a>b,則(  )
A.ac>bcB.a-c<b-cC.a2>b2D.a3>b3

查看答案和解析>>

同步練習(xí)冊(cè)答案