20.已知F為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點,l1,l2為C的兩條漸近線,點A在l1上,且FA⊥l1,點B在l2上,且FB∥l1,若|FA|=$\frac{4}{5}$|FB|,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$或$\frac{{3\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

分析 求出|FA|,|FB|,利用|FA|=$\frac{4}{5}$|FB|,建立方程,即可求出雙曲線C的離心率.

解答 解:由題意,l1:y=$\frac{a}$x,l2:y=-$\frac{a}$x,F(xiàn)(c,0)
∴|FA|=$\frac{\frac{bc}{a}}{\sqrt{\frac{^{2}}{{a}^{2}}+1}}$=b.
FB的方程為y=$\frac{a}$(x-c),與l2:y=-$\frac{a}$x聯(lián)立,可得B($\frac{c}{2}$,-$\frac{bc}{2a}$),
∴|FB|=$\sqrt{\frac{{c}^{2}}{4}+\frac{^{2}{c}^{2}}{4{a}^{2}}}$=$\frac{{c}^{2}}{2a}$,
∵|FA|=$\frac{4}{5}$|FB|,
∴b=$\frac{4}{5}$•$\frac{{c}^{2}}{2a}$,∴2c2=5ab,∴4c4=25a2(c2-a2),
∴4e4-25e2+25=0,
∴e=$\frac{\sqrt{5}}{2}$或$\sqrt{5}$,
故選A.

點評 本題考查雙曲線的方程和性質(zhì),主要考查雙曲線的漸近線方程和離心率的求法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若其外接圓半徑$R=\frac{5}{6}$,$cosB=\frac{3}{5}$,$cosA=\frac{12}{13}$,則c=$\frac{21}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設[x]表示不超過實數(shù)x的最大整數(shù),例如:[4.3]=4,[-2.6]=-3,則點集{(x,y)|[x]2+[y]2=25}所覆蓋的面積為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設函數(shù)f(x)是定義在R上的以5為周期的奇函數(shù),若$f(2)>1,f(3)=\frac{{{a^2}+a+3}}{a-3}$,則a的取值范圍是(-∞,-2)∪(0,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設點(9,3)在函數(shù)f(x)=loga(x-1)(a>0,a≠1)的圖象上,則f(x)的反函數(shù)f-1(x)=2x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.現(xiàn)有3個命題:
P1:函數(shù)f(x)=lgx-|x-2|有2個零點.
P2:面值為3分和5分的郵票可支付任何n(n>7,n∈N)分的郵資.
P3:若a+b=c+d=2,ac+bd>4,則a、b、c、d中至少有1個為負數(shù).
那么,這3個命題中,真命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知“三段論”中的三段:
①$y=2sin\frac{1}{2}x+cos\frac{1}{2}x$可化為y=Acos(ωx+φ);
②y=Acos(ωx+φ)是周期函數(shù);
③$y=2sin\frac{1}{2}x+cos\frac{1}{2}x$是周期函數(shù),
其中為小前提的是( 。
A.B.C.D.①和②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設a,b∈R,i是虛數(shù)單位,則“$a=\sqrt{3}$,b=1”是“$|{\frac{1+bi}{a+i}}|=\frac{{\sqrt{2}}}{2}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=xlnx+3x-2,射線l:y=kx-k(x≥1).若射線l恒在函數(shù)y=f(x)圖象的下方,則整數(shù)k的最大值為( 。
A.4B.5C.6D.7

查看答案和解析>>

同步練習冊答案