10.已知函數(shù)f(x)=xlnx+3x-2,射線l:y=kx-k(x≥1).若射線l恒在函數(shù)y=f(x)圖象的下方,則整數(shù)k的最大值為( 。
A.4B.5C.6D.7

分析 由題意得問題等價于k<$\frac{xlnx+3x-2}{x-1}$對任意x>1恒成立,令g(x)=$\frac{xlnx+3x-2}{x-1}$,利用導(dǎo)數(shù)求得函數(shù)的最小值即可得出結(jié)論.

解答 解:由題意,問題等價于k<$\frac{xlnx+3x-2}{x-1}$對任意x>1恒成立.
令g(x)=$\frac{xlnx+3x-2}{x-1}$,∴g′(x)=$\frac{x-2-lnx}{(x-1)^{2}}$,
令h(x)=x-2-lnx,故h(x)在(1,+∞)上是增函數(shù),
由于h(3)=1-ln3<0,h(4)=2-ln4>0
所以存在x0∈(3,4),使得h(x0)=x0-2-lnx0=0.
則x∈(1,x0)時,h(x)<0;x∈(x0,+∞)時,h(x)>0,
即x∈(1,x0)時,g'(x)<0;x∈(x0,+∞)時,g'(x)>0
知g(x)在(1,x0)遞減,(x0,+∞)遞增,
又g(x0)<g(3)=$\frac{3}{2}$ln3+$\frac{7}{2}$<g(4)=4+2ln4,所以kmax=5.
故選B.

點評 本題主要考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值等性質(zhì),考查學(xué)生的運算能力,綜合性較強(qiáng),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知F為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點,l1,l2為C的兩條漸近線,點A在l1上,且FA⊥l1,點B在l2上,且FB∥l1,若|FA|=$\frac{4}{5}$|FB|,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$或$\frac{{3\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=$\sqrt{4x-3}$,則f(x)的導(dǎo)函數(shù)f′(x)=$\frac{{2\sqrt{4x-3}}}{4x-3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知關(guān)于x的不等式ax2-3x+2≤0的解集為{x|1≤x≤b}.
(1)求實數(shù)a,b的值;
(2)解關(guān)于x的不等式:$\frac{x+3}{ax-b}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)$(1-x){(2x+1)^5}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_5}{x^6}$,則a2等于30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=tanx-1的定義域為$\left\{{x\left|{x≠\frac{π}{2}+kπ,k∈z}\right.}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實數(shù)a≠b,且滿足(a+1)2=3-3(a+1),3(b+1)=3-(b+1)2,則b$\sqrt{\frac{a}}$+a$\sqrt{\frac{a}}$的值為( 。
A.-23B.23C.13D.-13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,三棱柱ABC-A1B1C1中,CC1⊥平面ABC,∠ACB=90°,BB1=3,AC=BC=2,D,E分別為AB,BC的中點,F(xiàn)為BB1上一點,且$\frac{BF}{F{B}_{1}}$=$\frac{2}{7}$.
(1)求證:平面CDF⊥平面A1C1E;
(2)求二面角C1-CD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知x∈R,a=x2-1,b=2x+2.
(1)求a+b的取值范圍;
(2)用反證法證明:a,b中至少有一個大于等于0.

查看答案和解析>>

同步練習(xí)冊答案