11.設[x]表示不超過實數(shù)x的最大整數(shù),例如:[4.3]=4,[-2.6]=-3,則點集{(x,y)|[x]2+[y]2=25}所覆蓋的面積為12.

分析 根據(jù)方程,對于x,y≥0時,求出x,yd的整數(shù)解,分別對|[x]|=5、4、3、0時確定x的范圍,對應的y的范圍,求出面積,再求其和.

解答 解:方程:[x]2+[y]2=25
x,y≥0時,[x],[y]的整解有兩組,(3,4),(0,5)
顯然x的最大值是5
|[x]|=5時,5≤x<6,或者-5≤x<-4,|[y]|=0,0≤y<1,圍成的區(qū)域是2個單位正方形
|[x]|=4時,4≤x<5,或者-4≤x<-3,|[y]|=3,-3≤y<-2,或者3<y≤4,圍成的區(qū)域是4個單位正方形
|[x]|=3時,3≤x<4,或者-3≤x<-2,|[y]|=4,-4≤y<-3,或者4<y≤5,圍成的區(qū)域是4個單位正方形
|[x]|=0時,0≤x<1,|[y]|=5,5≤y<6 或者-5≤y<-4,圍成的區(qū)域是2個單位正方形
總面積是:12
故答案為:12.

點評 本題考查探究性問題,是創(chuàng)新題,考查分類討論思想,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.一個戰(zhàn)士一次射擊,命中環(huán)數(shù)大于8,大于5,小于4,小于7,這四個事件中,互斥事件有( 。
A.2對B.4對C.6對D.3對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.二項式${({\frac{1}{x}-1})^5}$的展開式中,系數(shù)最大的項為$\frac{10}{{x}^{3}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合A=N,B={x∈R|z=3+xi,且|z|=5}(i為虛數(shù)單位),則A∩B=( 。
A.4B.-4C.{4}D.{-4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.點F1、F2分別是雙曲線${x^2}-\frac{y^2}{3}=1$的左、右焦點,點P在雙曲線上,則△PF1F2的內(nèi)切圓半徑r的取值范圍是( 。
A.$({0,\sqrt{3}})$B.(0,2)C.$({0,\sqrt{2}})$D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.$\int_{-1}^1{(xcosx+\root{3}{x^2})dx}$的值為( 。
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{5}{4}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在等差數(shù)列{an}中,前n項和為Sn,$\frac{S_2}{S_4}=\frac{1}{3}$,則$\frac{S_4}{S_8}$等于( 。
A.$\frac{3}{10}$B.$\frac{1}{8}$C.$\frac{1}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知F為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點,l1,l2為C的兩條漸近線,點A在l1上,且FA⊥l1,點B在l2上,且FB∥l1,若|FA|=$\frac{4}{5}$|FB|,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$或$\frac{{3\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若函數(shù)f(x)=$\sqrt{4x-3}$,則f(x)的導函數(shù)f′(x)=$\frac{{2\sqrt{4x-3}}}{4x-3}$.

查看答案和解析>>

同步練習冊答案