(本題滿分12分)在正四棱錐中,側棱的長為所成的角的大小等于

(1)求正四棱錐的體積;
(2)若正四棱錐的五個頂點都在球的表面上,求此球的半徑.
(1) (立方單位)(2)

試題分析:(1)取的中點,記正方形對角線的交點為,連,,,則

,,
,,得.                        ……4分
,

正四棱錐的體積等于(立方單位).                      ……8分
(2)連,,設球的半徑為,則,
中有,得。                         ……12分
點評:對于此題,關鍵是找清楚邊角之間的關系,套用公式計算即可.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖所示,四棱錐中,為正方形, 分別是線段的中點. 求證:
(1)//平面 ; 
(2)平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.

(1)證明:平面PBE平面PAB;
(2)求PC與平面PAB所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩條不同的直線,兩個不同的平面,則下列命題中正確的是(     )
A.若
B.若
C.若
D.若

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)如圖,在長方體ABCD-A1B1C1D1中,E, F分別是棱BC,CC1上的點,CF="AB=2CE," AB:AD:AA1=1:2:4.

(Ⅰ)求異面直線EF與A1D所成角的余弦值;
(Ⅱ)證明AF⊥平面A1ED;
(Ⅲ)求二面角A1-ED-F的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,,的中點.

(1)求證:平行平面
(2)求二面角的余弦值;
(3)試問線段上是否存在點,使角?若存在,確定點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)
已知是四邊形所在平面外一點,四邊形的菱形,側面
為正三角形,且平面平面.
(1)若邊的中點,求證:平面.
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖4,已知四棱錐,底面是正方形,,點的中點,點的中點,連接,.

(1)求證:;
(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果空間中若干點在同一平面內(nèi)的射影在一條直線上,那么這些點在空間的位置是__________.

查看答案和解析>>

同步練習冊答案