已知
a
=(1+cos2x,2cosx),
b
=(1,sinx),函數(shù)f(x)=
a
b
(x∈R)

(1)求函數(shù)f(x)的最小正周期、最大值和最小值;
(2)求函數(shù)f(x)的單調遞增區(qū)間.
分析:(1)利用平面向量的數(shù)量積的坐標運算與二倍角的正弦可求得f(x)=
2
sin(2x+
π
4
)+1,從而可求函數(shù)f(x)的最小正周期、最大值和最小值;
(2)利用正弦函數(shù)的單調性,解不等式2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
(k∈Z)及可求得答案.
解答:解:(1)∵f(x)=
a
b

=1+cos2x+2sinxcosx
=1+cos2x+sin2x
=
2
sin(2x+
π
4
)+1,
∴函數(shù)f(x)的最小正周期T=
2
=π,
f(x)max=
2
,f(x)min=-
2

(2)由2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
(k∈Z)得:
kπ-
8
≤x≤kπ+
π
8
(k∈Z),
∴函數(shù)f(x)的單調遞增區(qū)間為[kπ-
8
,kπ+
π
8
](k∈Z).
點評:本題考查三角函數(shù)的周期性及其求法,考查平面向量的數(shù)量積的坐標運算,突出考查正弦函數(shù)的單調性與最值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
.
a
=(cos
π
4
x,1),
.
b
=(f(x),2sin
π
4
x,1),
.
a
.
b
,數(shù)列{an}滿足:{a1=
1
2
,an+1=f(an),n∈N*}.
(1)用數(shù)學歸納法證明:0<an<an+1<1;
(2)已知an
1
2
,證明an+1-
π
4
an
4-π
4

(3)設Tn是數(shù)列{an}的前n項和,試判斷Tn與n-3的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<α<β<π.
(1)求證:
a
+
b
 與
a
-
b
互相垂直;
(2)若k
a
+
b
a
-k
b
的長度相等,求β-α的值(k為非零的常數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=1,|
b
|=
2
,且
a
b
的夾角為θ

(1)若
a
b
,求
a
b
;
(2)若θ=
π
4
,求|
a
+3
b
|

(3)若
a
-2
b
a
垂直,求cosθ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ).
(1)若α-β=
6
,求
a
b
的值;
(2)若
a
b
=
4
5
,α=
π
8
,且α-β∈(-
π
2
,0)
,求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cos
π
2
3
2
-cos
π
2
),
b
=(
3
2
+cos
x
2
,sin
x
2
)且
a
b
.求
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
的值.

查看答案和解析>>

同步練習冊答案