7.若圓臺(tái)的上、下底面半徑的比為3:5,則它的中截面分圓臺(tái)上下兩部分面積之比為( 。
A.3:5B.9:25C.5:$\sqrt{41}$D.7:9

分析 中截面把圓臺(tái)分為上、下兩個(gè)圓臺(tái),則兩個(gè)圓臺(tái)的側(cè)高相等,且中截面半徑等于兩底面半徑和的一半,根據(jù)圓臺(tái)的上、下底面半徑的比為3:5,我們可以設(shè),上底半徑為3R,下底半徑為5R,母線長(zhǎng)為2L,求出上、下兩部分側(cè)面積,即可得到答案.點(diǎn)評(píng):

解答 解:設(shè)上底半徑為3R,下底半徑為5R,母線長(zhǎng)為2L,
則中截面半徑為4R,分成的兩個(gè)圓臺(tái)的母線長(zhǎng)均為L(zhǎng),
則S=π(4R+3R)L,
S=π(4R+5R)L,
故分圓臺(tái)上、下兩部分側(cè)面積的比為7:9.
故選:D,

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是圓臺(tái)的側(cè)面積,根據(jù)中截面把圓臺(tái)分為上、下兩個(gè)圓臺(tái),則兩個(gè)圓臺(tái)的側(cè)高相等,且中截面半徑等于兩底面半徑和的一半,結(jié)合題目已知,求出上下兩部分的側(cè)面積是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓x2+y2+2x-4y+3=0.
(1)直線l過點(diǎn)(-2,0)且被圓C截得的弦長(zhǎng)為2,求直線的方程;
(2)從圓C外一點(diǎn)P向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求點(diǎn)P的坐標(biāo)所適合的方程,并求|PM|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表.已知從全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{2}{7}$.
(1)請(qǐng)完成上面的列聯(lián)表:若按95%的可靠性要求,根據(jù)列聯(lián)表的數(shù)據(jù),能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(2)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào).試求抽到10號(hào)的概率.
優(yōu)秀非優(yōu)秀總計(jì)
甲班104555
乙班203050
合計(jì)3075105
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一動(dòng)圓M與圓M1:(x+1)2+y2=1外切,與圓M2:(x-1)2+y2=9內(nèi)切,則動(dòng)圓圓心M點(diǎn)的軌跡方程為( 。
A.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠±2)C.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{15}$=1D.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對(duì)任意|m|≤2,不等式x2+mx+1>2x+m恒成立,則x的取值范圍為( 。
A.x>3或x<-1B.x>3C.x<-1D.-1<x<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知球的直徑PC=4,A,B在球面上,AB=2,∠CPA=∠CPB=45°,則棱錐P-ABC的體積為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(cos2x)=1-2sin2x,則f'(x)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知F1,F(xiàn)2分別是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn),兩條漸近線分別為l1,l2,經(jīng)過右焦點(diǎn)F2垂直于l1的直線分別交l1,l2于A,B兩點(diǎn),若|OA|+|OB|=2|AB|,且F2在線段AB上,則雙曲線的漸近線斜率為( 。
A.$±\frac{{\sqrt{5}}}{2}$B.±2C.$±\sqrt{2}$D.$±\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知$\frac{sinα+3cosα}{3cosα-sinα}$=5,求sin2α-sinαcosα的值.
(2)已知角α終邊上一點(diǎn)P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案