16.已知圓x2+y2+2x-4y+3=0.
(1)直線l過點(diǎn)(-2,0)且被圓C截得的弦長(zhǎng)為2,求直線的方程;
(2)從圓C外一點(diǎn)P向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求點(diǎn)P的坐標(biāo)所適合的方程,并求|PM|的最小值.

分析 (1)⊙C:x2+y2+2x-4y+3=0,化為標(biāo)準(zhǔn)方程,求出圓心C,半徑r.分類討論,利用C到l的距離為1,即可求直線l的方程;
(2)設(shè)P(x,y).由切線的性質(zhì)可得:CM⊥PM,利用|PM|=|PO|,可得3x+4y-12=0,求|PM|的最小值,即求|PO|的最小值,即求原點(diǎn)O到直線2x-4y+3=0的距離.

解答 解:(1)x2+y2+2x-4y+3=0可化為(x+1)2+(y-2)2=2.
當(dāng)l的斜率不存在時(shí),其方程為x=-2,與圓C的交點(diǎn)為A(-2,1),B(-2,3)
|AB|=2,符合題意;   
當(dāng)l的斜率存在時(shí),設(shè)其方程為y=k(x+2)即kx-y+2k=0
則C到l的距離d=$\frac{|-k-2+2k|}{\sqrt{{k}^{2}+1}}$=1
解得k=$\frac{3}{4}$,
∴l(xiāng)的方程為3x-4y+6=0
綜上,直線l的方程為x=-2或3x-4y+6=0.
(2)如圖:PM為圓C的切線,則CM⊥PM,∴△PMC為直角三角形,
∴|PM|2=|PC|2-|MC|2
設(shè)P(x,y),C(-1,2),|MC|=$\sqrt{2}$

∵|PM|=|PO|,
∴x2+y2=(x+1)2+(y-2)2-2.
化簡(jiǎn)得點(diǎn)P的軌跡方程為2x-4y+3=0.
求|PM|的最小值,即求|PO|的最小值,即求原點(diǎn)O到直線2x-4y+3=0的距離,
代入點(diǎn)到直線的距離公式可求得|PM|最小值為$\frac{3\sqrt{5}}{10}$.

點(diǎn)評(píng) 本題考查直線方程,考查直線與圓的位置關(guān)系,考查了圓的切線的性質(zhì)、勾股定理、兩點(diǎn)之間的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知|$\overrightarrow{a}$|=4,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{fn(x)}滿足${f_1}(x)=\frac{x}{{\sqrt{1+{x^2}}}}(x>0)$,fn+1(x)=f1(fn(x)).
(1)求f2(x),f3(x),并猜想fn(x)的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明對(duì)fn(x)的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等比數(shù)列{an}的前n項(xiàng)積為Tn,若log2a3+log2a7=2,則T9的值為( 。
A.±512B.512C.±1024D.1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$f(x)={x^{-2{m^2}+m+3}}(m∈{Z})$是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]上是增函數(shù),設(shè)a=f(log47),$b=f({{{log}_{\frac{1}{2}}}3})$,c=f(21,6),則a,b,c的大小關(guān)系是( 。
A.c<a<bB.c<b<aC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U=R,集合A={x|-1≤x≤3},集合B{x|2x>4},則A∩(∁UB)=( 。
A.{x|1≤x≤2}B.{x|-1≤x≤2}C.{x|0≤x≤2}D.{x|-1≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.上周某校高三年級(jí)學(xué)生參加了數(shù)學(xué)測(cè)試,年部組織任課教師對(duì)這次考試進(jìn)行成績(jī)分析.現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,已知這40名學(xué)生的成績(jī)?nèi)吭?0分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組[40,50);第二組[50,60);…;第六組[90,100],并據(jù)此繪制了如圖所示的頻率分布直方圖.
(Ⅰ)估計(jì)這次月考數(shù)學(xué)成績(jī)的平均分和眾數(shù);
(Ⅱ)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選2名,求至少有1名學(xué)生的成績(jī)?cè)趨^(qū)間[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)C滿足$\frac{a+b}{c}$=λ(λ為常數(shù)且λ>1),動(dòng)點(diǎn)C的軌跡為曲線E.
(Ⅰ)試求曲線E的方程;
(Ⅱ)當(dāng)λ=$\sqrt{3}$時(shí),過定點(diǎn)B(1,0)的直線與曲線E交于P,Q兩點(diǎn),N是曲線E上不同于P,Q的動(dòng)點(diǎn),試求△NPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若圓臺(tái)的上、下底面半徑的比為3:5,則它的中截面分圓臺(tái)上下兩部分面積之比為( 。
A.3:5B.9:25C.5:$\sqrt{41}$D.7:9

查看答案和解析>>

同步練習(xí)冊(cè)答案