19.已知f(x)為奇函數(shù),當(dāng)x∈[1,4]時,f(x)=x(x+1),那么當(dāng)-4≤x≤-1時,f(x)的最大值為-2.

分析 利用函數(shù)的奇偶性以及函數(shù)的對稱性求解函數(shù)的閉區(qū)間上的最大值即可.

解答 解:當(dāng)x∈[1,4]時,f(x)=x(x+1),函數(shù)的最小值為:2,
f(x)為奇函數(shù),-4≤x≤-1時,f(x)的最大值為:-2.
故答案為:-2.

點評 本題考查二次函數(shù)的性質(zhì),考查的最值,函數(shù)的奇偶性的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F,離心率e=$\frac{1}{2}$,點$D(0\;,\;\sqrt{3})$在橢圓E上.
(Ⅰ) 求橢圓E的方程;
(Ⅱ) 設(shè)過點F且不與坐標(biāo)軸垂直的直線交橢圓E于A,B兩點,△DAF的面積為S△DAF,△DBF的面積為S△DBF,且S△DAF:S△DBF=2:1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙兩人各進行3次射擊,甲、乙每次擊中目標(biāo)的概率分別為$\frac{1}{2}$和$\frac{2}{3}$.
(1)求甲至多擊中目標(biāo)2次的概率;
(2)記乙擊中目標(biāo)的次數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.四面體ABCD中,AB=2,BC=CD=DB=3,AC=AD=$\sqrt{13}$,則四面體ABCD外接球表面積是16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.集合U={1,2,3,4,5,6},A={1,3,5},B={2,4,5},則A∩∁UB=( 。
A.{1}B.{1,3}C.{1,3,6}D.{2,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)實數(shù)a∈(0,10)且a≠1,則函數(shù)f(x)=logax在(0,+∞)內(nèi)為增函數(shù)且$g(x)=\frac{a-3}{x}$在(0,+∞)內(nèi)也為增函數(shù)的概率是( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某畢業(yè)生參加人才招聘會,分別向甲、乙、丙三個公司投遞了個人簡歷,假定該畢業(yè)生得到甲家公司面試的概率為$\frac{1}{2}$,得到乙、丙公司面試的概率均為p,且三個公司是否讓其面試是相互獨立的,記X為該畢業(yè)生得到面試的公司個數(shù),若P(X=0)=$\frac{1}{18}$,則隨機變量X的數(shù)學(xué)期望E(X)=$\frac{11}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=xex與函數(shù)g(x)=$\frac{1}{2}$x2+ax的圖象在點(0,0)處有相同的切線.
(Ⅰ)求a的值;
(Ⅱ)設(shè)h(x)=f(x)-bg(x)(b∈R),求函數(shù)h(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2-4x,則不等式f(x)>x的解集為(-5,0)∪(5,+∞).

查看答案和解析>>

同步練習(xí)冊答案