【題目】從某小學隨機抽取100名同學,將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖),
(1)由圖中數(shù)據(jù)求a的值;
(2)若要從身高在[120,130),[130,140),[140,150]三組內(nèi)的學生中,用分層抽樣的方法選取18人參加一項活動,則從身高在[140,150]內(nèi)的學生中選取的人數(shù)應為多少?
(3)估計這所小學的小學生身高的眾數(shù),中位數(shù)(保留兩位小數(shù))及平均數(shù).
【答案】(1)a=0.030;(2)3人;(3)眾數(shù)115cm,中位數(shù)123.33cm,平均數(shù)124.5cm
【解析】
(1)根據(jù)頻率和為1,求出[120,130)頻率,再除以10,即為所求的值;
(2)先求出三組的人數(shù),根據(jù)分層抽樣按比例分配,將18人按比例分配,即可求解;
(3)根據(jù)直方圖,頻率最大組的中間值,為眾數(shù);從左到右求出頻率和為0.5所在的組,再求出在該組所占的比例,即可求出中位數(shù);根據(jù)平均數(shù)的公式,即可求解.
(1)因為直方圖中的各個矩形的面積之和為1,
所以有10×(0.005+0.035+a+0.020+0.010)=1,
解得a=0.030;
(2)由直方圖知,三個區(qū)域內(nèi)的學生總數(shù)為
100×10×(0.030+0.020+0.010)=60人,
其中身高在[140,150]內(nèi)的學生人數(shù)為10人,
所以從身高在[140,150]范圍內(nèi)抽取的學生人數(shù)為
10=3人;
(3)根據(jù)頻率分布直方圖知,身高在[110,120)內(nèi)的小矩形圖最高,
所以該組數(shù)據(jù)的眾數(shù)為115cm;
又0.005×10+0.035×10=0.4<0.5,
0.4+0.030×10=0.7>0.5,
所以中位數(shù)在[120,130)內(nèi),
則中位數(shù)為;
根據(jù)頻率分布直方圖,計算平均數(shù)為
105×0.05+115×0.35+125×0.3+135×0.2+145×0.1=124.5cm.
科目:高中數(shù)學 來源: 題型:
【題目】若方程 所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則;
②若C為雙曲線,則或;
③曲線C不可能是圓;
④若,曲線C為橢圓,且焦點坐標為;
⑤若,曲線C為雙曲線,且虛半軸長為.
其中真命題的序號為____________.(把所有正確命題的序號都填在橫線上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若,在上恒成立,求的取值范圍;
(2)設數(shù)列,為數(shù)列的前項和,求證:;
(3)當時,設函數(shù)的圖象與函數(shù)的圖象交于點,,過線段的中點作軸的垂線分別交,于點,問是否存在點,使在處的切線與在處的切線平行?若存在,求出的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某部門在上班高峰時段對甲、乙兩座地鐵站各隨機抽取了50名乘客,統(tǒng)計其乘車等待時間(指乘客從進站口到乘上車的時間,單位:分鐘)將統(tǒng)計數(shù)據(jù)按,,,…,分組,制成頻率分布直方圖如圖所示:
(1)求a的值;
(2)記A表示事件“在上班高峰時段某乘客在甲站乘車等待時間少于20分鐘”試估計A的概率;
(3)假設同組中的每個數(shù)據(jù)用該組區(qū)間左端點值來估計,記在上班高峰時段甲、乙兩站各抽取的50名乘客乘車的平均等待時間分別為,求的值,并直接寫出與的大小關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應段的概率,并假設各年的年入流量相互獨立.
(1)求未來4年中,至多1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關系:
年入流量 | |||
發(fā)電量最多可運行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)(=1,2,…,6),如表所示:
試銷單價(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | q | 84 | 83 | 80 | 75 | 68 |
已知.
(Ⅰ)求出的值;
(Ⅱ)已知變量具有線性相關關系,求產(chǎn)品銷量(件)關于試銷單價(元)的線性回歸方程;
(參考公式:線性回歸方程中,的最小二乘估計分別為,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)調(diào)查顯示,某高校萬男生的身高服從正態(tài)分布,現(xiàn)從該校男生中隨機抽取名進行身高測量,將測量結(jié)果分成組: , , , , , ,并繪制成如圖所示的頻率分布直方圖.
(Ⅰ)求這名男生中身高在(含)以上的人數(shù);
(Ⅱ)從這名男生中身高在以上(含)的人中任意抽取人,該人中身高排名(從高到低)在全校前名的人數(shù)記為,求的數(shù)學期望.
(附:參考數(shù)據(jù):若服從正態(tài)分布,則, , .)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量=(sinx,cosx),=(sin(x﹣),sinx),函數(shù)f(x)=2,g(x)=f().
(1)求f(x)在[,π]上的最值,并求出相應的x的值;
(2)計算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,討論g(x)在[t,t+2]上零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com