16.一個由半球和四棱錐組成的幾何體,其三視圖如圖所示,則該幾何體的體積為( 。
A.$4+\frac{2π}{3}$B.$4+\frac{{\sqrt{2}π}}{6}$C.$12+\frac{2π}{3}$D.$12+\frac{{\sqrt{2}π}}{6}$

分析 根據(jù)幾何體的三視圖,得出該幾何體的上部是正四棱錐,下部是半球體,結(jié)合圖中數(shù)據(jù)求出它的體積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體的上部是正四棱錐,
且正四棱錐的底面邊長是2,棱錐的高為3,其體積為$\frac{1}{3}$×2×2×3=4,
下部是半球體,且半球體的半徑徑是1,其體積為$\frac{1}{2}$×$\frac{4}{3}$π×13=$\frac{2π}{3}$,
故該幾何體的體積為4+$\frac{2π}{3}$,
故選:A

點評 本題考查的知識點是由三視圖,求體積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知{an}為等差數(shù)列,Sn為其前n項和,若a1=8,a4+a6=0,則S8=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.己知三棱錐A-BCO,OA,OB,OC兩兩垂直且長度均為6,長為2的線段MN的一個端點M在棱OA上運動,另一個端點N在底面BCO內(nèi)運動(含邊界),則MN的中點P的軌跡與三棱錐的O點所在的三個面所圍成的幾何體的表面積為( 。
A.$\frac{5π}{2}$B.$\frac{5π}{4}$C.$\frac{3+π}{2}$D.3+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知向量$\overrightarrow a=({sin(ωx+φ),2})$,$\overrightarrow b=({1,cos(ωx+φ)})$,$(ω>0,0<φ<\frac{π}{4})$,函數(shù)$f(x)=(\overrightarrow a+\overrightarrow b)(\overrightarrow a-\overrightarrow b)$,已知y=f(x)的圖象的一個對稱中心與它相鄰的一條對稱軸之間的距離為1,且經(jīng)過點$M(1,\frac{7}{2})$
(Ⅰ)求函數(shù)f(x)的解析式
(Ⅱ)先將函數(shù)y=f(x)圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼摩斜,縱坐標(biāo)不變,再向右平移m(m>0)個單位長度,向下平移3個單位長度,得到函數(shù)y=g(x)的圖象,若函數(shù)g(x)的圖象關(guān)于原點對稱,求實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=sin(2x+$\frac{π}{6}$)的最小正周期為(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.從分別標(biāo)有數(shù)字1,2,3,4,5,6,7,8,9的9張卡片中任取2張,則這兩張卡片上的數(shù)字之和是偶數(shù)的概率是$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,既是奇函數(shù)又存在零點的是( 。
A.y=sinxB.y=lnxC.y=x2D.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,$F(x)=\left\{\begin{array}{l}f(x)(x>0)\\-f(x)(x<0)\end{array}\right.$
(1)若f(-1)=0,且函數(shù)f(x)的值域為[0,+∞),求F(x)的表達(dá)式;
(2)設(shè)n<0<m,m+n>0,a>0且f(x)為偶函數(shù),試判斷函數(shù)值:F(m)+F(n)的正負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各函數(shù)中,最小值為4的是( 。
A.$y=x+\frac{4}{x}$B.$y=sinx+\frac{4}{sinx}(0<x<π)$
C.y=4log3x+logx3D.y=4ex+e-x

查看答案和解析>>

同步練習(xí)冊答案