5.已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,$F(x)=\left\{\begin{array}{l}f(x)(x>0)\\-f(x)(x<0)\end{array}\right.$
(1)若f(-1)=0,且函數(shù)f(x)的值域為[0,+∞),求F(x)的表達式;
(2)設(shè)n<0<m,m+n>0,a>0且f(x)為偶函數(shù),試判斷函數(shù)值:F(m)+F(n)的正負.

分析 (1)f(-1)=0得出a,b的關(guān)系,再根據(jù)f(x)有最小值0列方程解出a,b即可得出F(x);
(2)由偶函數(shù)可得b=0,寫出F(m)+F(n)關(guān)于a,m,n的表達式,由m>-n>0,a>0即可判斷結(jié)論.

解答 解:(1)∵f(-1)=0,∴a-b+1=0,即a=b-1,
∵f(x)的值域為[0,+∞),∴$\left\{\begin{array}{l}{a>0}\\{^{2}-4a=0}\end{array}\right.$,
∴b2-4(b-1)=0,解得b=2,a=1,
∴f(x)=x2+2x+1,
∴F(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+1,x>0}\\{-{x}^{2}-2x-1,x<0}\end{array}\right.$.
(2)∵f(x)是偶函數(shù),∴f(x)=ax2+1,∴F(x)=$\left\{\begin{array}{l}{a{x}^{2}+1,x>0}\\{-a{x}^{2}-1,x<0}\end{array}\right.$,
∵n<0<m,∴F(m)+F(n)=am2+1-an2-1=a(m2-n2),
∵n<0<m,m+n>0,a>0,
∴m2>n2,∴a(m2-n2)>0.
∴F(m)+F(n)>0.

點評 本題考查了二次函數(shù)的性質(zhì),函數(shù)對稱性的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c.已知bcosC+ccosB=2b,則$\frac{a}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一個由半球和四棱錐組成的幾何體,其三視圖如圖所示,則該幾何體的體積為( 。
A.$4+\frac{2π}{3}$B.$4+\frac{{\sqrt{2}π}}{6}$C.$12+\frac{2π}{3}$D.$12+\frac{{\sqrt{2}π}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(文科)sin42°cos18°-cos138°cos72°=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}中,a1=2,a2=3,其前n項和Sn滿足Sn+1+Sn-1=2Sn+1,其中n≥2,n∈N*.
(1)求證:數(shù)列{an}為等差數(shù)列,并求其通項公式;
(2)設(shè)bn=an•2-n,Tn為數(shù)列{bn}的前n項和.
①求Tn的表達式,并判斷Tn的單調(diào)性;
②求使Tn>2的n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.兩條直線l1:2x+y+c=0,l2:x-2y+1=0的位置關(guān)系是( 。
A.平行B.垂直C.重合D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點P為函數(shù)f(x)=lnx的圖象上任意一點,點Q為圓${[{x-(e+\frac{1}{e})}]^2}+{y^2}=\frac{1}{4}$上任意一點,則線段PQ長度的最小值為( 。
A.$\frac{{e-\sqrt{{e^2}-1}}}{e}$B.$\frac{{2\sqrt{{e^2}+1}-e}}{2e}$C.$\frac{{\sqrt{{e^2}+1}-e}}{2e}$D.$e+\frac{1}{e}-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列說法:
①正切函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
②函數(shù)$f(x)=cos(\frac{2}{3}x+\frac{π}{2})$是奇函數(shù);
③$x=\frac{π}{8}$是函數(shù)$y=sin(2x+\frac{5}{4}π)$的一條對稱軸方程;
其中正確的是??②③.(寫出所有正確答案的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.關(guān)于 x 的方程 x 2-(2i-1)x+3m-i=0(m∈R )有實根,則m的取值范圍是( 。
A.m≥-$\frac{1}{4}$B.m=-$\frac{1}{4}$C.m≥$\frac{1}{12}$D.m=$\frac{1}{12}$

查看答案和解析>>

同步練習(xí)冊答案