1.從分別標(biāo)有數(shù)字1,2,3,4,5,6,7,8,9的9張卡片中任取2張,則這兩張卡片上的數(shù)字之和是偶數(shù)的概率是$\frac{4}{9}$.

分析 基本事件總數(shù)n=${C}_{9}^{2}$=36,這兩張卡片上的數(shù)字之和是偶數(shù)包含的基本事件個(gè)數(shù):m=${C}_{4}^{2}+{C}_{5}^{2}$=16,由此能求出這兩張卡片上的數(shù)字之和是偶數(shù)的概率.

解答 解:從分別標(biāo)有數(shù)字1,2,3,4,5,6,7,8,9的9張卡片中任取2張,
基本事件總數(shù)n=${C}_{9}^{2}$=36,
這兩張卡片上的數(shù)字之和是偶數(shù)包含的基本事件個(gè)數(shù):
m=${C}_{4}^{2}+{C}_{5}^{2}$=16,
∴這兩張卡片上的數(shù)字之和是偶數(shù)的概率是p=$\frac{m}{n}=\frac{16}{36}=\frac{4}{9}$.
故答案為:$\frac{4}{9}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某乳業(yè)公司生產(chǎn)甲、乙兩種產(chǎn)品,需要A、B、C三種苜蓿草飼料,生產(chǎn)1個(gè)單位甲種產(chǎn)品和生產(chǎn)1個(gè)單位乙種產(chǎn)品所需三種苜蓿草飼料的噸數(shù)如表所示:
產(chǎn)品苜蓿草飼料ABC
483
5510
現(xiàn)有A種飼料200噸,B種飼料360噸,C種飼料300噸,在此基礎(chǔ)上生產(chǎn)甲乙兩種產(chǎn)品,
已知生產(chǎn)1個(gè)單位甲產(chǎn)品,產(chǎn)生的利潤(rùn)為2萬(wàn)元,生產(chǎn)1個(gè)單位乙產(chǎn)品,產(chǎn)生的利潤(rùn)為3萬(wàn)元,分別用x、y表示生產(chǎn)甲、乙兩種產(chǎn)品的數(shù)量;
(1)用x、y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(2)問(wèn)分別生產(chǎn)甲乙兩種產(chǎn)品多少時(shí),能夠產(chǎn)出最大的利潤(rùn)?并求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$,函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[-1,1)B.[0,2]C.[-2,2)D.[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線和虛線畫(huà)出的是某空間幾何體的三視圖,則該幾何體的體積為( 。
A.2B.$\frac{2}{3}$C.4D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.一個(gè)由半球和四棱錐組成的幾何體,其三視圖如圖所示,則該幾何體的體積為( 。
A.$4+\frac{2π}{3}$B.$4+\frac{{\sqrt{2}π}}{6}$C.$12+\frac{2π}{3}$D.$12+\frac{{\sqrt{2}π}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,$asinC-\sqrt{3}ccosA=0$.
(1)求角A;
(2)若a=2,△ABC的面積為$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.(文科)sin42°cos18°-cos138°cos72°=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.兩條直線l1:2x+y+c=0,l2:x-2y+1=0的位置關(guān)系是( 。
A.平行B.垂直C.重合D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知數(shù)列{an}的首項(xiàng)為-1,an+1=2an+2,則數(shù)列{an}的通項(xiàng)公式為an=( 。
A.2n-1-2B.2n-2C.2n-1-2nD.-2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案