已知tanα=2,sinα+cosα<0,則
sin(2π-α)•sin(π+α)•cos(π+α)
sin(3π-α)•cos(π+α)
=
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專(zhuān)題:三角函數(shù)的求值
分析:由tanα的值,根據(jù)sinα+cosα<0,利用同角三角函數(shù)間基本關(guān)系求出cosα與sinα的值,原式利用誘導(dǎo)公式化簡(jiǎn),約分后將sinα的值代入計(jì)算即可求出值.
解答: 解:∵tanα=2,sinα+cosα<0,
∴cosα=-
1
1+tan2α
=-
5
5
,sinα=-
1-cos2α
=-
2
5
5

則原式=
-sinα(-sinα)(-cosα)
sinα(-cosα)
=sinα=-
2
5
5
,
故答案為:-
2
5
5
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,以及運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
1+sinθ+cosθ
1+sinθ-cosθ
=
1
2
,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)市場(chǎng)調(diào)查,某商品在最近40天內(nèi)的價(jià)格P與時(shí)間t的關(guān)系用圖(1)中的一條折線(xiàn)表示,銷(xiāo)售量Q與時(shí)間t的關(guān)系用圖(2)中的線(xiàn)段表示(t∈N*

(1)分別寫(xiě)出圖(1)表示的價(jià)格與時(shí)間的函數(shù)關(guān)系式P=f(t),圖(2)表示的銷(xiāo)售量與時(shí)間的函數(shù)關(guān)系式Q=g(t).
(2)求這種商品的銷(xiāo)售額S(銷(xiāo)售額=銷(xiāo)售量×價(jià)格)的最大值及此時(shí)的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
1
2
n•an+1,其中a1=1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=
an+1
an+2
+
an+2
an+1
,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:Tn<2n+
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于兩個(gè)非零量
a
,
b
,求使|
a
+t
b
|最小時(shí)的t的值,并求此時(shí)
b
a
+t
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:
tan(2π-α)sin(-2π-α)cos(6π-α)
sin(α+
2
)cos(α+
2
)
=-tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
cos25°-sin2
sin40°cos40°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
(1)sin(-α)cos(-α-π)tan(2π+α)
(2)
sin(180°+α)cos(-α)
tan(-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用二分法求出ln(2x+6)+2=3x 在區(qū)間(1,2)內(nèi)的近似解(精確到0.1).

查看答案和解析>>

同步練習(xí)冊(cè)答案