分析 (1)由an=$\frac{1}{2n-1}$,n∈N*,則$\frac{{a}_{n}+2}{{a}_{n}}$=$\frac{\frac{1}{2n-1}+2}{\frac{1}{2n-1}}$=4n-1,數(shù)列{$\frac{{a}_{n}+2}{{a}_{n}}$}是以3為首項(xiàng),以4為公差的等差數(shù)列,根據(jù)等差數(shù)列前n項(xiàng)和公式,即可求得Sn;
(2)由bn=anan+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),采用“裂項(xiàng)法”,即可求得{bn}的前n項(xiàng)和Tn.
解答 解:(1)由an=$\frac{1}{2n-1}$,n∈N*,
∴$\frac{{a}_{n}+2}{{a}_{n}}$=$\frac{\frac{1}{2n-1}+2}{\frac{1}{2n-1}}$=4n-1,
∴數(shù)列{$\frac{{a}_{n}+2}{{a}_{n}}$}是以3為首項(xiàng),以4為公差的等差數(shù)列,
∴數(shù)列{$\frac{{a}_{n}+2}{{a}_{n}}$}的前n項(xiàng)和Sn=$\frac{(3+4n-1)n}{2}$=2n2+n,
(2)bn=anan+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴{bn}的前n項(xiàng)和Tn,Tn=b1+b2+b3+…+bn,
=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)],
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$),
=$\frac{n}{2n+1}$,
Tn=$\frac{n}{2n+1}$.
點(diǎn)評(píng) 本題考查等差數(shù)列前n項(xiàng)和公式,考查“裂項(xiàng)法”求數(shù)列的前n項(xiàng)和,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,π) | B. | [0,$\frac{π}{4}$] | C. | [0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π) | D. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com