20.若函數(shù)y=f(x)的定義域是[-2,3],則函數(shù)y=f(x+1)+f(x-1)的定義域?yàn)閇-1,2].

分析 根據(jù)函數(shù)定義域的求法,直接解不等式-2≤x+1≤3,-2≤x-1≤3,即可求函數(shù)y=f(x+1)+f(x-1)的定義域.

解答 解:∵函數(shù)y=f(x)的定義域?yàn)閇-2,3],
∴-2≤x≤3,
由-2≤x+1≤3,
解得:-3≤x≤2,
由-2≤x-1≤3,
解得:-1≤x≤4,
即函數(shù)y=f(x+1)+f(x-1)的定義域[-1,2],
故答案為:[-1,2].

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)定義域的求法,直接利用函數(shù)f(x)的定義域,解不等式即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知方程$\frac{x^2}{k+1}+\frac{y^2}{3-k}=1$(k∈R)表示雙曲線,則k的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,a=x,b=2,B=30°,若這個(gè)三角形有兩解,則x的取值范圍是(2,4 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f:A→B的映射,
(1)若滿足任意a,b∈A,且a≠b,必有f(a)≠f(b),則稱f:A→B的映射為Q-型映射;
(2)若滿足任意d∈B,必存在c∈A,使得f(c)=d,則稱f:A→B的映射為Z-型映射,
則下列映射既是Q-型映射又是Z-型映射的是①③④.
①f:x→y=2x+1,A=R,B=R;
②f:x→y=x2+2x-3,A=R+,B=[-3,+∞);
③f:x→y=$\sqrt{2x-1}$,A=[1,2],B=[1,$\sqrt{3}$];
④f:x→y=$\frac{2x-1}{x+3}$,A={x|x≠-3},B={y|y≠2};
⑤f:x→y=|x-4|,A=R,B=R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=$\frac{1}{2}$sin(ωx+$\frac{π}{6}$)(ω>0)的部分圖象如圖所示,設(shè)M,N是圖象上的最高點(diǎn),P是圖象上的最低點(diǎn),若△PMN為等腰直角三角形,則ω=( 。
A.1B.2C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=ax2-bx+lnx,a,b∈R.
(1)當(dāng)a=b=1時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)當(dāng)b=2a+1時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)當(dāng)a=1,b>3時(shí),記函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的兩個(gè)零點(diǎn)是x1和x2(x1<x2),求證:f(x1)-f(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.4人到A,B,C三個(gè)景點(diǎn)參觀,每個(gè)景點(diǎn)至少安排1人,每人只去一個(gè)景點(diǎn),其中甲不去A景點(diǎn),則不同的參觀方案有( 。
A.12種B.18種C.24種D.30種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{e^x}{x-ae}$的極值點(diǎn)為2e+1.(這里的 是自然對(duì)數(shù)的底)
(1)求實(shí)數(shù)a的值;
(2)若數(shù)列{an}滿足an=f(n),問(wèn):數(shù)列{an}是否存在最小項(xiàng)?若存在,求出該最小項(xiàng);若不存在,請(qǐng)說(shuō)明再由;
(3)求證:f(2e+1)•f(2e+2)•…•f(2e+n)>(n+1)e2ne

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,若AC=3,BC=4,AB=5,以AB為軸將三角形旋轉(zhuǎn)一周得到一幾何體,求該幾何體的表面積與體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案