分析 (1)由已知得f(x)+f(1-x)=$\frac{4^x}{{{4^x}+2}}+\frac{2}{{2+{4^x}}}$,由此能證明f(x)+f(1-x)=1.
(2)令S=$f({\frac{1}{2016}})+f({\frac{2}{2016}})+f({\frac{3}{2016}})+…+f({\frac{2014}{2016}})+f({\frac{2015}{2016}})$ ①,則S=f(${\frac{2015}{2016}}$)+f(${\frac{2014}{2016}}$)+f($\frac{2013}{2016}$)+…+f(${\frac{2}{2016}}$)+f(${\frac{1}{2016}}$)②,①+②,由此能求出結果.
解答 (1)證明:∵f(x)=$\frac{4^x}{{{4^x}+2}}$,
∴f(x)+f(1-x)=$\frac{4^x}{{{4^x}+2}}+\frac{{{4^{1-x}}}}{{{4^{1-x}}+2}}$=$\frac{4^x}{{{4^x}+2}}+\frac{4}{{4+2•{4^x}}}$
=$\frac{4^x}{{{4^x}+2}}+\frac{4}{{4+2•{4^x}}}$=$\frac{4^x}{{{4^x}+2}}+\frac{2}{{2+{4^x}}}$=1
(2)解:令S=$f({\frac{1}{2016}})+f({\frac{2}{2016}})+f({\frac{3}{2016}})+…+f({\frac{2014}{2016}})+f({\frac{2015}{2016}})$ ①
則S=$f({\frac{2015}{2016}})+f({\frac{2014}{2016}})+f({\frac{2013}{2016}})+…+f({\frac{2}{2016}})+f({\frac{1}{2016}})$ ②
兩式相加,由(1)得,2S=2015,S=$\frac{2015}{2}$.
∴f(${\frac{1}{2016}}$)+f(${\frac{2}{2016}}$)+f(${\frac{3}{2016}}$)+…+f(${\frac{2014}{2016}}$)+f(${\frac{2015}{2016}}$)=$\frac{2015}{2}$.
點評 本題考查等式成立的證明,考查函數(shù)值的求法,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 正方形 | B. | 平行四邊形 | C. | 正五邊形 | D. | 正六邊形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{2}$ | B. | -$\frac{2}{3}$ | C. | $\frac{2}{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com