分析 (1)由條件利用同角三角函數(shù)的基本關(guān)系,求得cosα、tanα的值.
(2)由題意可得α為銳角,sinα、cosα>0,再根據(jù)tanα=$\frac{sinα}{cosα}$=-$\sqrt{2}$,以及 sin2α+cos2α=1,求得sinα、cosα的值.
解答 解:(1)已知sinα=$\frac{12}{13}$,且-$\frac{3π}{2}$<α<-π,
∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{5}{13}$,tanα=$\frac{sinα}{cosα}$=-$\frac{12}{5}$.
(2)若tanα=$\frac{sinα}{cosα}$=-$\sqrt{2}$,0<α<π,∴α為銳角,∴sinα、cosα>0.
∵sin2α+cos2α=1,∴sinα=$\frac{\sqrt{6}}{3}$,cosα=$\frac{\sqrt{3}}{3}$.
點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x+1 | B. | f(x)=-x2 | C. | f(x)=$\frac{1}{x}$ | D. | y=|x| |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com