7.已知向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow$=(cosβ,sinβ),0<α<β<2π.
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求|$\overrightarrow{a}$-2$\overrightarrow$|的值;
(2)設(shè)向量$\overrightarrow{c}$=(2,0),若$\overrightarrow{a}$+2$\overrightarrow$=$\overrightarrow{c}$,求α、β的值.

分析 (1)根據(jù)平面向量的數(shù)量積與模長(zhǎng)公式,即可求出計(jì)算結(jié)果;
(2)利用向量相等,列出方程組,結(jié)合三角函數(shù)的運(yùn)算法則求出α、β的值.

解答 解:(1)向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow$=(cosβ,sinβ),
∴|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1; 
又$\overrightarrow{a}$⊥$\overrightarrow$,∴$\overrightarrow{a}$•$\overrightarrow$=0;
于是${(\overrightarrow{a}-2\overrightarrow)}^{2}$=${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow$+4${\overrightarrow}^{2}$=22-0+4=8,
∴|$\overrightarrow{a}$-2$\overrightarrow$|=2$\sqrt{2}$;
(2)∵$\overrightarrow{c}$=(2,0),
$\overrightarrow{a}$+2$\overrightarrow$=(2cosα+2cosβ,2sinα+2sinβ),
∴$\left\{\begin{array}{l}{2cosα+2cosβ=2}\\{2sinα+2sinβ=0}\end{array}\right.$,
由此得cosα+cosβ=1,且sinβ=sin(2π-α),
由0<α<β<2π,得α=$\frac{π}{3}$,β=$\frac{5π}{3}$.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與模長(zhǎng)公式的應(yīng)用問(wèn)題,也考查了向量相等和三角函數(shù)的運(yùn)算問(wèn)題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某四棱錐的三視圖如圖所示,則俯視圖的面積為( 。
A.2B.$\frac{5}{2}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知tan($\frac{π}{4}$+α)=$\frac{1}{2}$,則tanα的值為(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)向量$\overrightarrow a,\overrightarrow b$滿(mǎn)足$|{\overrightarrow a}|=2\sqrt{2},|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a•\overrightarrow b=1$,則$|{\overrightarrow a-2\overrightarrow b}|$=( 。
A.$2\sqrt{3}$B.12C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.計(jì)算:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{7}{8}$)0+[(-2)3]${\;}^{-\frac{4}{3}}$+16${\;}^{-\frac{3}{4}}$+|-0.01|${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知向量|$\overrightarrow{a}$|=3,$\overrightarrow{a}$•$\overrightarrow$=$\frac{3}{2}$,|$\overrightarrow{a}$+$\overrightarrow$|=$\frac{3\sqrt{6}}{2}$,則向量$\overrightarrow{a}$在$\overrightarrow$上的投影為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點(diǎn),若$\overrightarrow{PA}$=$\overrightarrow a$,$\overrightarrow{PB}$=$\overrightarrow b$,$\overrightarrow{PC}$=$\overrightarrow c$,則$\overrightarrow{BE}$=( 。
A.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$B.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\frac{1}{2}$$\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{3}{2}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$D.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\frac{3}{2}\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)m、n是兩條不同的直線,α、β、γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若m∥n,n?α,則m∥α 
②若m⊥α,m∥β,則α⊥β
③α∥β,α∥γ,則β∥γ      
④若α⊥β,m∥α,則m⊥β
其中正確命題的序號(hào)是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.f(x)=x2,若對(duì)任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實(shí)數(shù)t的取值范圍是(-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案