【題目】如圖,四棱錐的底面是邊長(zhǎng)為1的正方形,垂直于底面,.

1)求平面與平面所成二面角的大;

2)設(shè)棱的中點(diǎn)為,求異面直線(xiàn)所成角的大小.

【答案】1;(2.

【解析】

1)根據(jù)題意可證明,所以即為平面與平面所成二面角的平面角,結(jié)合線(xiàn)段關(guān)系即可求得的大;

2)根據(jù)題意,可證明,從而由線(xiàn)面垂直的判定定理證明平面,即可得,所以異面直線(xiàn)所成角為.

1)由題意可知底面是邊長(zhǎng)為1的正方形,

,

又因?yàn)?/span>垂直于底面,平面,

由于,

平面,

平面,

所以,

即為平面與平面所成二面角的平面角,

可知,

中,;

2)由,且,為棱的中點(diǎn),

所以由等腰三角形性質(zhì)可知,

又因?yàn)?/span>,且,

所以平面

平面,

所以,而,

所以平面,

平面,

所以

則異面直線(xiàn)垂直,所以異面直線(xiàn)的夾角為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若的值域?yàn)?/span>,求的值;

(Ⅱ)巳,是否存在這祥的實(shí)數(shù),使函數(shù)在區(qū)間內(nèi)有且只有一個(gè)零點(diǎn).若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀(guān)影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實(shí)線(xiàn)分別為調(diào)整后的函數(shù)圖象.

給出下列四種說(shuō)法:

①圖(2)對(duì)應(yīng)的方案是:提高票價(jià),并提高成本;

②圖(2)對(duì)應(yīng)的方案是:保持票價(jià)不變,并降低成本;

③圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并保持成本不變;

④圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并降低成本.

其中,正確的說(shuō)法是____________.(填寫(xiě)所有正確說(shuō)法的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型商場(chǎng)的空調(diào)在1月到5月的銷(xiāo)售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷(xiāo)量(百臺(tái))

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷(xiāo)售量可用線(xiàn)性回歸模型擬合該商場(chǎng)空調(diào)的月銷(xiāo)量(百件)與月份之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線(xiàn)性回歸方程,并預(yù)測(cè)6月份該商場(chǎng)空調(diào)的銷(xiāo)售量;

(2)若該商場(chǎng)的營(yíng)銷(xiāo)部對(duì)空調(diào)進(jìn)行新一輪促銷(xiāo),對(duì)7月到12月有購(gòu)買(mǎi)空調(diào)意愿的顧客進(jìn)行問(wèn)卷調(diào)查.假設(shè)該地?cái)M購(gòu)買(mǎi)空調(diào)的消費(fèi)群體十分龐大,經(jīng)過(guò)營(yíng)銷(xiāo)部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

有購(gòu)買(mǎi)意愿對(duì)應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購(gòu)買(mǎi)意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購(gòu)買(mǎi)意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線(xiàn)性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)的參數(shù)方程為(t為參數(shù)).

(1)寫(xiě)出曲線(xiàn)的參數(shù)方程和直線(xiàn)的普通方程;

(2)已知點(diǎn)是曲線(xiàn)上一點(diǎn),,求點(diǎn)到直線(xiàn)的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用合適的方法表示下列集合,并說(shuō)明是有限集還是無(wú)限集.

1)到AB兩點(diǎn)距離相等的點(diǎn)的集合

2)滿(mǎn)足不等式的集合

3)全體偶數(shù)

4)被5除余1的數(shù)

520以?xún)?nèi)的質(zhì)數(shù)

6

7)方程的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),以極軸為軸的正半軸,取相同的單位長(zhǎng)度,建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為 .

(1)寫(xiě)出直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)曲線(xiàn)經(jīng)過(guò)伸縮變換得到曲線(xiàn),曲線(xiàn)上任一點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)

⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;

⑵當(dāng),求函數(shù)的最小值;

⑶是否存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出的值;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】=2sinωx+φ),x∈R,其中ω0,﹣πφ≤π.若函數(shù)fx)的最小正周期為,且當(dāng)x=時(shí),fx)取得最大值,則( )

A. fx)在區(qū)間[﹣2π0]上是增函數(shù)B. fx)在區(qū)間[﹣3π﹣π]上是增函數(shù)

C. fx)在區(qū)間[3π,5π]上是減函數(shù)D. fx)在區(qū)間[4π6π]上是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案