5.如圖幾何體E-ABCD是四棱錐,△ABD為正三角形,∠BCD=120°,CB=CD=CE=1,AB=AD=AE=$\sqrt{3}$,且EC⊥BD,
(Ⅰ)設AC,BD相交于點O,求證:直線EO⊥平面ABCD;
(Ⅱ)設M是棱AE的中點,求二面角D-BM-C的平面角的余弦值.

分析 (1)推導出AC⊥BD,從而EO⊥AC,EO⊥BD,由此能證明直線EO⊥平面ABCD.
(2)以O 為原點,OA為x軸,OB為y軸,OE為z軸,建立空間直角坐標系,利用向量法能求出二面角D-BM-C的平面角的余弦值.

解答 證明:(1)∵△ABD 為正三角形,∠BCD=120°,CB=CD=CE=1,
∴AC⊥BD,且CO=$\frac{1}{2}$,AO=$\frac{3}{2}$,
連接EO,則$\frac{EO}{CE}=\frac{CE}{AC}$,∴EO⊥AC,
又∵O是BD中點,故EO⊥BD,
∵AC∩BD=O,
∴直線EO⊥平面ABCD.
解:(2)如圖,以O 為原點,OA為x軸,OB為y軸,OE為z軸,建立空間直角坐標系,
則B(0,$\frac{\sqrt{3}}{2}$,0),D(0,-$\frac{\sqrt{3}}{2}$,0),C(-$\frac{1}{2}$,0,0),M($\frac{3}{4}$,0,$\frac{3}{4}$),
$\overrightarrow{DM}$=($\frac{3}{4},\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{4}$),$\overrightarrow{DB}=(0,\sqrt{3},0)$,
設DBM的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DB}=\sqrt{3}y=0}\\{\overrightarrow{m}•\overrightarrow{DM}=\frac{3}{4}x+\frac{\sqrt{3}}{2}y+\frac{\sqrt{3}}{4}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{m}$(-$\frac{\sqrt{3}}{3}$,0,1),
$\overrightarrow{CB}$=($\frac{1}{2},\frac{\sqrt{3}}{2},0$),$\overrightarrow{CM}$=($\frac{5}{4},0,\frac{\sqrt{3}}{4}$),
同理得平面CBM的法向量$\overrightarrow{n}=(-\frac{\sqrt{3}}{5},\frac{1}{5},1)$,
設二面角D-BM-C的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3\sqrt{87}}{29}$.
故二面角D-BM-C的平面角的余弦值為 $\frac{3\sqrt{87}}{29}$.

點評 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.在一次研究性學習中,老師給出函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=ex(x+1).甲、乙、丙、丁四位同學在研究此函數(shù)時給出下列結(jié)論:
①當x>0時,f(x)=ex(1-x);
②f(x)=0有2個不相等實根;
③f(x)>0的解集為(-1,0)∪(1,+∞);
④函數(shù)f(x)在R為減函數(shù),
其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=a-$\frac{2}{x}$
(1)若2f(1)=f(2),求a的值;
(2)判斷f(x)在(-∞,0)上的單調(diào)性并用定義證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,已知sinA:sinB:sinC=3:5:7,則此三角形的最大內(nèi)角為( 。
A.75°B.120°C.135°D.150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知向量$\overrightarrow a=(1,2),\overrightarrow b=(1,0),\overrightarrow c=(3,-4)$,若λ為實數(shù)且$(\overrightarrow a+λ\overrightarrow b)$∥$\overrightarrow c$,則λ=$-\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.若集合A={x|-1≤2x+1≤3},B={y|y=x2-2x(x∈(2,3]},求A∩B,(∁RA)∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.給出下列函數(shù)①$f(x)=(\frac{1}{2})^{x}$; ②f(x)=x2; ③f(x)=x3; ④$f(x)={x}^{\frac{1}{2}}$;⑤f(x)=log2x.其中滿足條件f $(\frac{{x}_{1}+{x}_{2}}{2})$>$\frac{f({x}_{1})+f({x}_{2})}{2}$  (0<x1<x2)的函數(shù)的序號是④⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,向量$\overrightarrow{m}$=(tanA+tanB,-tanB),$\overrightarrow{n}$=(b,2c),且$\overrightarrow{m}⊥\overrightarrow{n}$
(1)求角A的大小;
(2)若$a=\sqrt{13}$,△ABC的面積為$3\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=sin2x+cos2x.
(1)求周期,
(2)若將f(x)的圖象向右平移φ個單位,所得圖象關(guān)于y軸對稱,求φ的最小正值.

查看答案和解析>>

同步練習冊答案