如圖(1)所示,在直角梯形ABCP中,BCAP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別為線段PC、PD、BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD(圖(2)).
(1)求證:AP平面EFG;
(2)若點(diǎn)Q是線段PB的中點(diǎn),求證:PC⊥平面ADQ;
(3)求三棱錐C-EFG的體積.
(1)證明:E、F、G分別為線段PC、PD、BC的中點(diǎn),
可得EFCDAB.
由于AB?平面PAB,EF不在平面 PAB內(nèi),故有 EF平面PAB.
同理可證,EG平面PAB.
由于EF、EG是平面EFG內(nèi)的兩條相交直線,
故有平面EFG平面PAB.
而PA?平面PAB,∴AP平面EFG.
(2)由條件可得,CD⊥AD,CD⊥PD,
而PD、AD是兩條相交直線,故CD⊥平面PAD,
∴∠PDA 為二面角PCD-CD-ABCD的平面角.
再由平面PCD⊥平面ABCD,可得PD⊥AD,故DA、DP、DC互相垂直,故AD⊥平面PCD,
而PC?平面PCD,故有AD⊥PC.
∵點(diǎn)Q是線段PB的中點(diǎn),∴EQ平行且等于
1
2
BC,∴EQ平行且等于
1
2
AD,故四邊形ADEQ為梯形.
再由AD=DC=PD=2,可得DE為等腰直角三角形PCD 斜邊上的中線,∴DE⊥PC.
這樣,PC垂直于平面ADQ中的兩條相交直線AD、DE,∴PC⊥平面ADQ.
(3)VC-EFG=VG-CEF=
1
3
•S△CEF•CG=
1
3
•(
1
2
•EF•DF
)•CG=
1
3
•(
1
2
×1×1
)×1=
1
6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

長方體ABCD-A1B1C1D1,AB=2,AD=2,AA1=
6
,則點(diǎn)D到平面ACD1的距離是(  )
A.
1
2
B.
3
2
C.
6
2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,是一個(gè)由三根細(xì)鐵桿PA,PB,PC組成的支架,三根鐵桿的兩兩夾角都是60°,一個(gè)半徑為1的球放在支架上,則球心到P的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,ABCD是平行四邊形,M,N,Q分別PB,PC,AB的中點(diǎn).
求證:(1)MN平面PAD;
(2)QN平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四面體ABCD中,平面EFGH分別平行于棱CD、AB,E、F、G、H分別在BD、BC、AC、AD上,且CD=a,AB=b,CD⊥AB.
(1)求證:四邊形EFGH是矩形.
(2)設(shè)
DE
DB
=λ(0<λ<1)
,問λ為何值時(shí),四邊形EFGH的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的長方體ABCD-A1B1C1D1中,底面ABCD是邊長為2的正方形,O為AC與BD的交點(diǎn),BB1=
2
,M是線段B1D1的中點(diǎn).
(1)求證:BM平面D1AC;
(2)求三棱錐D1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知E、F分別是三棱錐A-BCD的側(cè)棱AB、AD的中點(diǎn),
求證:EF平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)多面體ABCDEF,已知ABCDEF,平面ABCD⊥平面ADF,△ADF是以AD為斜邊的等腰直角三角形,若∠ADC=120°,AD=2,AB=2,CD=4,EF=3,G為BC的中點(diǎn).
(1)求證:EG平面ADF;
(2)求直線DE與平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,AB=2,∠PDA=45°,E、F分別是AB、PC的中點(diǎn).
(1)求證:EF平面PAD;
(2)求異面直線EF與CD所成的角;
(3)若AD=3,求點(diǎn)D到面PEF的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案