5.已知某幾何體的三視圖如圖所示,則幾何體的體積為(  )
A.$\frac{2π}{3}$+$\frac{1}{6}$B.$\frac{π}{3}$+$\frac{1}{3}$C.$\frac{π}{3}$+$\frac{1}{6}$D.$\frac{\sqrt{2}π}{6}$+$\frac{1}{6}$

分析 由三視圖知該幾何體是一個(gè)組合體:上面是三棱錐、下面是半球,由三視圖求出幾何元素的長度,由球體、錐體的體積公式求出該幾何體的體積.

解答 解:根據(jù)三視圖可知幾何體是一個(gè)組合體:上面是三棱錐、下面是半球,
且三棱錐的底面是等腰直角三角形、直角邊為1,高為1,
由圓的直徑所對(duì)的圓周角是直角得球的半徑是$\frac{\sqrt{2}}{2}$,
∴幾何體的體積V=$\frac{1}{3}×\frac{1}{2}×1×1×1+\frac{1}{2}×\frac{4}{3}π×{(\frac{\sqrt{2}}{2})}^{3}$
=$\frac{\sqrt{2}π}{6}+\frac{1}{6}$,
故選D.

點(diǎn)評(píng) 本題考查三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.甲乙兩人做游戲,游戲的規(guī)則是:兩人輪流從1(1必須報(bào))開始連續(xù)報(bào)數(shù),每人一次最少要報(bào)一個(gè)數(shù),最多可以連續(xù)報(bào)7個(gè)數(shù)(如,一個(gè)人先報(bào)數(shù)“1,2”,則下一個(gè)人可以有“3”,“3,4”,…,“3,4,5,6,7,8,9”等七種報(bào)數(shù)方法),誰搶先報(bào)到“100”則誰獲勝.如果從甲開始,則甲要想必勝,第一次報(bào)的數(shù)應(yīng)該是1,2,3,4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x2-2ln|x|與g(x)=sin(ωx+φ)有兩個(gè)公共點(diǎn),則在下列函數(shù)中滿足條件的周期最大的g(x)=(  )
A.sin(2πx-$\frac{π}{2}$)B.sin($\frac{π}{2}$x-$\frac{π}{2}$)C.sin(πx-$\frac{π}{2}$)D.sin(πx+$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某三棱柱被一個(gè)平面截去一部分后所得的幾何體的三視圖如圖所示,其中俯視圖是邊長為2的正三角形,則截去部分和剩余部分的體積之比為(  )
A.$\frac{10}{33}$B.$\frac{13}{36}$C.$\frac{13}{23}$D.$\frac{23}{33}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直三棱柱ABC-A1B1C1的所有頂點(diǎn)都在球O的球面上,AA1=2$\sqrt{3}$,∠BAC=30°,BC=1,則球O的體積為( 。
A.$\frac{20}{3}π$B.$\frac{25}{3}π$C.$\frac{28}{3}π$D.$\frac{32}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,以O(shè)為圓心的圓與直線x-$\sqrt{3}$y=4相切,直線l:y=kx+1與圓O交于P、Q兩點(diǎn).
(1)若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=-2,求實(shí)數(shù)k的值;
(2)過點(diǎn)(0,1)作直線l1與l垂直,且直線l2與圓O交于M,N兩點(diǎn),求四邊形PMQN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如果無窮數(shù)列{an}滿足下列條件:
①an+an+2≤2an+1;
②存在實(shí)數(shù)M,使得an≤M,其中n∈N*,
那么我們稱數(shù)列{an}為Ω數(shù)列.
(1)設(shè){an}是各項(xiàng)為正數(shù)的等比數(shù)列,Sn是其前n項(xiàng)和,a3=$\frac{1}{4}$,S3=$\frac{7}{4}$,證明:數(shù)列{Sn}是Ω數(shù)列;
(2)設(shè)數(shù)列{an}的通項(xiàng)為an=5n-2n,且是Ω數(shù)列,求M的取值范圍;
(3)設(shè)數(shù)列{an}是各項(xiàng)均為正整數(shù)的Ω數(shù)列,問:是否存在常數(shù)n0∈N*,使得a${\;}_{n_0}}$>a${\;}_{{n_0}+1}}$,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)的導(dǎo)函數(shù)f'(x)滿足2f(x)+xf′(x)>x2(x∈R),則對(duì)?x∈R都有( 。
A.x2f(x)≥0B.x2f(x)≤0C.x2[f(x)-1]≥0D.x2[f(x)-1]≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行如圖的程序框圖,若輸入t=-1,則輸出t的值等于(  )
A.3B.5C.7D.15

查看答案和解析>>

同步練習(xí)冊(cè)答案