A. | x2f(x)≥0 | B. | x2f(x)≤0 | C. | x2[f(x)-1]≥0 | D. | x2[f(x)-1]≤0 |
分析 構造函數(shù)F(x)=x2f(x),求函數(shù)的導數(shù),利用導數(shù)研究函數(shù)的單調(diào)性即可.
解答 解:構造函數(shù)F(x)=x2f(x),
則F'(x)=2xf(x)+x2f'(x)=x(2f(x)+xf'(x)),
當x>0時,F(xiàn)'(x)>x3>0,F(xiàn)(x)遞增;
當x<0時,F(xiàn)'(x)<x3<0,F(xiàn)(x)遞減,
所以F(x)=x2f(x)在x=0時取最小值,
從而F(x)=x2f(x)≥F(0)=0,
故選A.
點評 本題主要考查函數(shù)單調(diào)性的應用,構造函數(shù),求函數(shù)的導數(shù),利用函數(shù)單調(diào)性和導數(shù)之間的關系是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2π}{3}$+$\frac{1}{6}$ | B. | $\frac{π}{3}$+$\frac{1}{3}$ | C. | $\frac{π}{3}$+$\frac{1}{6}$ | D. | $\frac{\sqrt{2}π}{6}$+$\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{2}{e}$) | B. | ($\frac{1}{e}$,+∞) | C. | (e,+∞) | D. | (-∞,$\frac{1}{e}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | a>c>b | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com