18.為了響應(yīng)廈門市政府“低碳生活,綠色出行”的號召,思明區(qū)委文明辦率先全市發(fā)起“少開一天車,呵護廈門藍”綠色出行活動,“從今天開始,從我做起,力爭每周至少一天不開車,上下班或公務(wù)活動帶頭選擇步行、騎車或乘坐公交車,鼓勵拼車…”鏗鏘有力的話語,傳遞了低碳生活、綠色出行的理念.某機構(gòu)隨機調(diào)查了本市500名成年市民某月的騎車次數(shù),統(tǒng)計如下:


[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
18歲至30歲61420324048
31歲至44歲4620284042
45歲至59歲221833371911
60歲及以上1513101255
聯(lián)合國世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老年人.記本市一個年滿18歲的青年人月騎車的平均次數(shù)為μ.以樣本估計總體.
(Ⅰ)估計μ的值;
(Ⅱ)在本市老年人或中年人中隨機訪問3位,其中月騎車次數(shù)超過μ的人數(shù)記為ξ,求ξ的分布列與數(shù)學(xué)期望.

分析 (Ⅰ)由已知可得表格,即可得出本市一個青年人月騎車的平均次數(shù).
(Ⅱ)本市老年人或中年人中月騎車時間超過40次的概率為$\frac{19+11+5+5}{140+60}$=$\frac{1}{5}$.ξ=0,1,2,3,ξ~B$(3,\frac{1}{5})$,故P(ξ=k)=${∁}_{3}^{k}$$(\frac{1}{5})^{k}(\frac{4}{5})^{3-k}$(k=0,1,2,3).

解答 解:(Ⅰ)由已知可得下表



人數(shù)   次數(shù)
年齡
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]合計
青年人102040608090300
中年人221833371911140
老年人151310125560
本市一個青年人月騎車的平均次數(shù):
μ=$5×\frac{10}{300}+15×\frac{20}{300}$+$25×\frac{40}{300}$+35×$\frac{60}{300}$+45×$\frac{80}{300}$+55×$\frac{90}{300}$=40.(5分)
(Ⅱ)本市老年人或中年人中月騎車時間超過40次的概率為$\frac{19+11+5+5}{140+60}$=$\frac{1}{5}$.(7分)
ξ=0,1,2,3,ξ~B$(3,\frac{1}{5})$,故P(ξ=k)=${∁}_{3}^{k}$$(\frac{1}{5})^{k}(\frac{4}{5})^{3-k}$(k=0,1,2,3)..(9分)
所以ξ的分布列如下:
ξ0123
P$\frac{64}{125}$$\frac{48}{125}$$\frac{12}{125}$$\frac{1}{125}$
(11分)
E(ξ)=$3×\frac{1}{5}$=0.6.(12分)

點評 本小題主要考查對頻數(shù)分布表的理解與應(yīng)用,古典概型、隨機變量的數(shù)學(xué)期望等基礎(chǔ)知識,考查運算求解能力、數(shù)據(jù)處理能力、應(yīng)用意識,考查必然與或然思想、化歸與轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\overrightarrow{a}$=(2λsinx,sinx+cosx),$\overrightarrow$=($\sqrt{3}$cosx,λ(sinx-cosx))(λ>0),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的最大值為2.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,cosA=$\frac{2b-a}{2c}$,若f(A)-m>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率π,他從圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,24,48,…,192,…,逐個算出正六邊形,正十二邊形,正二十四邊形,…,正一百九十二邊形,…的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時候π的近似值是3.141024,劉徽稱這個方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想及其重要,對后世產(chǎn)生了巨大影響,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,若運行改程序(參考數(shù)據(jù):$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),則輸出n的值為( 。
A.48B.36C.30D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若$A=45°,a=\sqrt{2},b=\sqrt{3}$,則B等于( 。
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知P,Q為動直線y=m(0<m<$\frac{{\sqrt{2}}}{2}$)與y=sinx和y=cosx在區(qū)間$[0,\frac{π}{2}]$上的左,右兩個交點,P,Q在x軸上的投影分別為S,R.當(dāng)矩形PQRS面積取得最大值時,點P的橫坐標為x0,則( 。
A.${x_0}<\frac{π}{8}$B.${x_0}=\frac{π}{8}$C.$\frac{π}{8}<{x_0}<\frac{π}{6}$D.${x_0}>\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)F1和F2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個焦點,若F1,F(xiàn)2,P(0,2b)是正三角形的三個頂點,則雙曲線的漸近線方程是( 。
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{3}$xC.y=±$\frac{\sqrt{21}}{7}$xD.y=±$\frac{\sqrt{21}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i是虛數(shù)單位,復(fù)數(shù)z=$\frac{1}{2+i}$,則z•$\overline{z}$=(  )
A.25B.5C.$\frac{1}{25}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.(1+x+x2)(1-x)10的展開式中,x10的系數(shù)為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,橢圓E和拋物線y2=$\frac{9}{4}$x交于M,N兩點,且直線MN恰好通過橢圓E的右焦點F2
(1)求橢圓E的標準方程;
(2)已知橢圓E的左焦點為F1,左、右頂點分別為A,B,經(jīng)過點F1的直線l與橢圓E交于C,D兩點,記△ABD與△ABC的面積分別為S1,S2,求|S1-S2|的最大值.

查看答案和解析>>

同步練習(xí)冊答案