5.若離散型隨機(jī)變量ξ的概率分布如表所示,則a的值為(  )
 ξ-1 1
 P 4a-1 3a2+a
A.$\frac{1}{3}$B.-2C.$\frac{1}{3}$或-2D.$\frac{1}{2}$

分析 利用離散型隨機(jī)變量ξ的概率分布列的性質(zhì)列出不等式組,由此能求出結(jié)果.

解答 解:由離散型隨機(jī)變量ξ的概率分布表知:
$\left\{\begin{array}{l}{0≤4a-1≤1}\\{0≤3{a}^{2}+a≤1}\\{4a-1+3{a}^{2}+a=1}\end{array}\right.$,
解得a=$\frac{1}{3}$.
故選:A.

點(diǎn)評 本題考查實(shí)數(shù)值的求法,考查離散型隨機(jī)變量的分布列等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力,考查化歸與轉(zhuǎn)化思想、考查函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法:
①分類變量A與B的隨機(jī)變量x2越大,說明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=2,$\overline x=1,\overline y=3$,則a=1.正確的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓E的中心在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對稱軸,其右焦點(diǎn)為F(1,0),點(diǎn)A(0,1)在橢圓上,過點(diǎn)A作兩條直線,與橢圓E分別交于M,N兩點(diǎn),直線AM,AN的斜率乘積為-1.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:直線MN過定點(diǎn),并求定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某學(xué)校為了解學(xué)校食堂的服務(wù)情況,隨機(jī)調(diào)查了50名就餐的教師和學(xué)生.根據(jù)這50名師生對餐廳服務(wù)質(zhì)量進(jìn)行評分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為[40,50),[50,60),…,[90,100].
(1)求頻率分布直方圖中a的值;
(2)從評分在[40,60)的師生中,隨機(jī)抽取2人,求此人中恰好有1人評分在[40,50)上的概率;
(3)學(xué)校規(guī)定:師生對食堂服務(wù)質(zhì)量的評分不得低于75分,否則將進(jìn)行內(nèi)部整頓,試用組中數(shù)據(jù)估計(jì)該校師生對食堂服務(wù)質(zhì)量評分的平均分,并據(jù)此回答食堂是否需要進(jìn)行內(nèi)部整頓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x+$\frac{t}{x}$(x>0)過點(diǎn)P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點(diǎn)分別為M,N,設(shè)g(t)=|MN|,若對任意的正整數(shù)n,在區(qū)間[2,n+$\frac{64}{n}$]內(nèi),若存在m+1個(gè)數(shù)a1,a2,…am+1,使得不等式g(a1)+g(a2)+…g(am)<g(am+1),則m的最大值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.(${x}^{2}-\frac{1}{x}$)6的展開式的中間一項(xiàng)為( 。
A.-20x3B.20x3C.-20D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)中,最小正周期為$\frac{π}{2}$的是(  )
A.y=|sinx|B.y=sinxcosxC.y=|tanx|D.y=cos4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,已知a=6,b=5,c=4,則△ABC的面積為$\frac{15\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.大學(xué)生趙敏利用寒假參加社會(huì)實(shí)踐,對機(jī)械銷售公司7月份至11月份銷售某種機(jī)械配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)x元和銷售量y件之間的一組數(shù)據(jù)如表所示:
月份7891011
銷售單價(jià)x元99.51010.511
銷售量y件1110865
(1)根據(jù)7至11月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)預(yù)計(jì)在今后的銷售中,銷售量與銷售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷售單價(jià)應(yīng)定為多少元才能獲得最大利潤?
參考公式:回歸直線方程$\widehat{y}$=b$\widehat{x}$+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$.
參考數(shù)據(jù):$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{x}_{i}^{2}$=502.5.

查看答案和解析>>

同步練習(xí)冊答案