設(shè)函數(shù)f(x)=ex(ax2+x+1),且a>0,求函數(shù)f(x)的單調(diào)區(qū)間及其極大值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)數(shù),分類討論,利用導(dǎo)數(shù)的正負(fù),即可求函數(shù)f(x)的單調(diào)區(qū)間及其極大值.
解答: 解:∵f(x)=ex(ax2+x+1),∴f′(x)=aex(x+
1
a
)(x+2)(3分)
當(dāng)a=
1
2
時(shí),f′(x)≥0,f(x)在R上單增,此時(shí)無極大值;    (5分)
當(dāng)0<a<
1
2
時(shí),f′(x)>0,則x>-2或x<-
1
a
,f′(x)<0,則-
1
a
<x<-2
∴f(x)在(-∞,-
1
a
)和(2,+∞)上單調(diào)遞增,在(-
1
a
,-2)上單調(diào)遞減.…(8分)
此時(shí)極大值為f(-
1
a
)=e-
1
a
     (9分)
當(dāng)a>
1
2
時(shí),f′(x)>0,則x<-2或x>-
1
a
,f′(x)<0,則-2<x<-
1
a

∴f(x)在(-∞,-2)和(-
1
a
,+∞)上單調(diào)遞增,在(-2,-
1
a
)上單調(diào)遞減.…(11分)
此時(shí)極大值為f(-2)=e-2(4a-1)(12分)
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)研究函數(shù)的極值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若在(x+
3
x
)
n
的展開式中,各系數(shù)之和為A,各二項(xiàng)式系數(shù)之和為B,且A+B=72,則n的值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(ax2+a+1)+e-bx在(0,f(0))處切線為x+y-2=0,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,S2=1+3m且S3=3+4m(m∈R),則a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在區(qū)間(0,1)內(nèi)任選一個(gè)數(shù)a,求能使方程x2+2ax+
1
2
=0有兩個(gè)不相等的實(shí)根的概率;
(2)某校規(guī)定周末18:30開始考勤,假設(shè)該校學(xué)生小張與小王在18:00-18:25之間到校,且每人在該時(shí)間段的任何時(shí)刻到校是等可能的,求小張與小王到校時(shí)間相差5分鐘之內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)的部分圖象如圖所示,則函數(shù)y=f(x)的表達(dá)式是(  )
A、f(x)=2sin(2x-
π
3
)
B、f(x)=2sin(2x+
π
3
)
C、f(x)=2sin(2x+
3
)
D、f(x)=2sin(x+
π
12
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c,對(duì)?x∈[-1,1],均有f(x)≤1.求證:對(duì)?x∈[-1,1],均有|2ax+b|≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明函數(shù)f(x)=x+
1
x
在(-1,0)上是減少的.

查看答案和解析>>

同步練習(xí)冊(cè)答案