A. | 4 | B. | 5 | C. | 6 | D. | 10 |
分析 先判定△OAC∽△BOD,根據線段成比例求得BD=9.取CD的中點為F,勾股定理求得OF=$\sqrt{{OD}^{2}{-DF}^{2}}$,可得 OB=$\sqrt{{OF}^{2}{+BF}^{2}}$ 的值,再根據BE=OB減去半徑,求得BE的值.
解答 解:∵OC=OD=6,∴∠OCD=∠ODC,又∠BOD=∠A,∴∠AOC=∠OBD,
∴△OAC∽△BOD,∴$\frac{AC}{OD}$=$\frac{OC}{BD}$,即$\frac{4}{6}$=$\frac{6}{BD}$,∴BD=9.
取CD的中點為F,則OF⊥CD,∵CD=3,∴FD=$\frac{3}{2}$,則OF=$\sqrt{{OD}^{2}{-DF}^{2}}$=$\frac{\sqrt{135}}{2}$,
∴OB=$\sqrt{{OF}^{2}{+BF}^{2}}$=$\sqrt{\frac{135}{4}{+(9+\frac{3}{2})}^{2}}$=12,∴BE=OB-6=6,
故選:C.
點評 本題主要考查與圓有關的比例線段,三角形相似的判定和性質,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 5π | B. | $\frac{20}{3}$π | C. | 8π | D. | $\frac{28}{3}$π |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com