20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,若函數(shù)y=f(x)-k有且只有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是($\frac{1}{2}$,+∞).

分析 根據(jù)題意,分析可得若函數(shù)y=f(x)-k有且只有兩個(gè)零點(diǎn),則函數(shù)y=f(x)的圖象與直線y=k有且只有兩個(gè)交點(diǎn);作出函數(shù)y=f(x)的圖象,分析直線y=k與其圖象有且只有兩個(gè)交點(diǎn)時(shí)k的取值范圍,即可得答案.

解答 解:根據(jù)題意,若函數(shù)y=f(x)-k有且只有兩個(gè)零點(diǎn),
則函數(shù)y=f(x)的圖象與直線y=k有且只有兩個(gè)交點(diǎn),
而函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,其圖象如圖,
若直線y=k與其圖象有且只有兩個(gè)交點(diǎn),必有k>$\frac{1}{2}$,即實(shí)數(shù)k的取值范圍是($\frac{1}{2}$,+∞);
故答案為:($\frac{1}{2}$,+∞).

點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)的判斷方法,關(guān)鍵是將函數(shù)零點(diǎn)的個(gè)數(shù)轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)個(gè)數(shù)的問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知?jiǎng)狱c(diǎn)P到點(diǎn)M(-1,0)的距離與它到直線x=1的距離相等.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)若直線l:x+y+1=0與動(dòng)點(diǎn)P的軌跡交于A,B兩點(diǎn),求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知x>1成立的充分不必要條件是x>a,則實(shí)數(shù)a的取值范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知銳角△ABC的面積為2$\sqrt{3}$,AB=2,BC=4,則三角形的外接圓半徑為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知拋物線x2=2py (p>0),其焦點(diǎn)F到準(zhǔn)線的距離為1.過(guò)F作拋物線的兩條弦AB和CD,且M,N分別是AB,CD的中點(diǎn).設(shè)直線AB、CD的斜率分別為k1、k2
(1)若AB⊥CD,且k1=1,求△FMN的面積;
(2)若$\frac{1}{k_1}+\frac{1}{k_2}=1$,求證:直線MN過(guò)定點(diǎn),并求此定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若a2sinC=4sinA,(ca+cb)(sinA-sinB)=sinC(2$\sqrt{7}$-c2),則△ABC的面積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在四棱錐P-ABCD中,PA⊥底面ABCD,其中PA=2AB=2AD=2,G為三角形BCD的重心,則PG與底面ABCD所成角的正弦值為( 。
A.$3\sqrt{2}$B.$\frac{3\sqrt{11}}{11}$C.$\frac{{\sqrt{19}}}{19}$D.$\frac{{3\sqrt{19}}}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,設(shè)P是圓x2+y2=6上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且$\overrightarrow{DP}=\sqrt{2}\overrightarrow{DM}$.
(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)若點(diǎn)Q(1,1)恰為直線l與曲線C相交弦的中點(diǎn),試確定直線l的方程;
(3)直線$x+y-\sqrt{3}=0$與曲線C相交于E、G兩點(diǎn),F(xiàn)、H為曲線C上兩點(diǎn),若四邊形EFGH對(duì)角線相互垂直,求SEFGH的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn)O,過(guò)點(diǎn),M(4,0)的直線l與拋物線C2分別相交于A,B兩點(diǎn).
(1)求證:以AB為直徑的圓過(guò)原點(diǎn)O;
(2)若坐標(biāo)原點(diǎn)關(guān)于直線l的對(duì)稱(chēng)點(diǎn)P在拋物線C2上,直線l與橢圓C1相切,求橢圓C1的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案