分析 由題意和三角形的面積公式求出sinB,由銳角三角形的條件和平方關(guān)系求出cosB,由余弦定理求出AC,由正弦定理求出△ABC的外接圓的半徑,即可得解.
解答 解:∵AB=2,BC=4,面積為2$\sqrt{3}$,
∴2$\sqrt{3}$=$\frac{1}{2}×2×4×$sinB,解得:sinB=$\frac{\sqrt{3}}{2}$,
∵B為銳角,可得:cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{1}{2}$,
∴由余弦定理可得:AC=$\sqrt{A{B}^{2}+B{C}^{2}-2•AB•BC•cosB}$=$\sqrt{4+16-2×2×4×\frac{1}{2}}$=2$\sqrt{3}$,
∴設(shè)三角形外接圓半徑為R,則由正弦定理可得:2R=$\frac{AC}{sinB}$=$\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$,解得R=2.
故答案為:2.
點(diǎn)評 本題考查了正弦定理、余弦定理的綜合應(yīng)用,以及三角形的面積公式,考查化簡、變形能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{6}}}{6}$ | C. | $\frac{{2\sqrt{3}}}{6}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin({\frac{x}{2}+\frac{5π}{6}})$ | B. | $y=sin({2x-\frac{π}{6}})$ | C. | y=2sin2x-1 | D. | $y=cos({2x-\frac{π}{6}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2ln 2 | B. | 2-ln 2 | C. | 4-ln 2 | D. | 4-2ln 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com