8.已知銳角△ABC的面積為2$\sqrt{3}$,AB=2,BC=4,則三角形的外接圓半徑為2.

分析 由題意和三角形的面積公式求出sinB,由銳角三角形的條件和平方關(guān)系求出cosB,由余弦定理求出AC,由正弦定理求出△ABC的外接圓的半徑,即可得解.

解答 解:∵AB=2,BC=4,面積為2$\sqrt{3}$,
∴2$\sqrt{3}$=$\frac{1}{2}×2×4×$sinB,解得:sinB=$\frac{\sqrt{3}}{2}$,
∵B為銳角,可得:cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{1}{2}$,
∴由余弦定理可得:AC=$\sqrt{A{B}^{2}+B{C}^{2}-2•AB•BC•cosB}$=$\sqrt{4+16-2×2×4×\frac{1}{2}}$=2$\sqrt{3}$,
∴設(shè)三角形外接圓半徑為R,則由正弦定理可得:2R=$\frac{AC}{sinB}$=$\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$,解得R=2.
故答案為:2.

點(diǎn)評 本題考查了正弦定理、余弦定理的綜合應(yīng)用,以及三角形的面積公式,考查化簡、變形能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}的前n項(xiàng)和Sn,滿足Sn=2an-1,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=log2an,n∈N*,求數(shù)列{(-1)nbn2}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線y2=2px(p>0)截直線y=2x-4所得弦長$|{AB}|=3\sqrt{5}$,
( I)求拋物線的方程;
( II)設(shè)F是拋物線的焦點(diǎn),求△ABF的外接圓上的點(diǎn)到直線AB的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l經(jīng)過點(diǎn)P(4,-3),且與圓C:(x+1)2+(y+2)2=25相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,若$a=\sqrt{6}$,b=4,B=2A,則sinA的值為( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{6}}}{6}$C.$\frac{{2\sqrt{3}}}{6}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列命題中為真命題的是③④.
①若兩個平面α∥β,a?α,b?β,則a∥b.
②若兩個平面α∥β,a?α,b?β,則a與b一定異面;
③若兩個平面α∥β,a?α,b?β,則a與b一定不相交;
④若兩個平面α∥β,a?α,b?β,則a與b共面或異面;
⑤若兩個平面α∥β,a?α,則a與β一定相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,若函數(shù)y=f(x)-k有且只有兩個零點(diǎn),則實(shí)數(shù)k的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)y=f(x)的最小正周期是π,且圖象關(guān)于點(diǎn)$({\frac{π}{3},0})$對稱,則f(x)的解析式可以(  )
A.$y=sin({\frac{x}{2}+\frac{5π}{6}})$B.$y=sin({2x-\frac{π}{6}})$C.y=2sin2x-1D.$y=cos({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.曲線y=$\frac{2}{x}$與直線y=x-1及x=4所圍成的封閉圖形的面積為( 。
A.2ln 2B.2-ln 2C.4-ln 2D.4-2ln 2

查看答案和解析>>

同步練習(xí)冊答案