7.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=1,∠B=45°,△ABC的面積S=2
(1)求邊b的長;
(2)求△ABC的外接圓的面積.

分析 (1)先根據(jù)三角形面積公式求得c邊的長,進(jìn)而利用余弦定理求得b的值.
(2)根據(jù)正弦定理利用$\frac{sinB}$=2R求得三角形外接圓的直徑,根據(jù)圓的面積公式即可得解.

解答 解:(1)∵S=$\frac{1}{2}$acsinB=2,
∴$\frac{1}{2}$×1×c×sin45°=2,
∴c=4$\sqrt{2}$,
∴b2=a2+c2-2accosB=1+32-2×1×4$\sqrt{2}$×cos45°,
∴b2=25,b=5.
(2)∵b=5,∠B=45°,
∴△ABC的外接圓的直徑等于$\frac{sinB}$=5$\sqrt{2}$,可求△ABC的外接圓的面積S=π×($\frac{5\sqrt{2}}{2}$)2=$\frac{25π}{2}$.

點評 本題主要考查了三角形的面積公式,圓的面積公式,正弦定理和余弦定理在解三角形中的應(yīng)用.作為正弦定理和余弦定理的變形公式也應(yīng)熟練掌握,以便做題時方便使用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,內(nèi)角A,B,C所對邊的邊長分別為a,b,c,已知2sin2$\frac{A}{2}$=$\sqrt{3}$sinA.
(I)求角A的大小;
(II)若$\frac{a}{c}$=2cosB,求$\frac{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,E,F(xiàn)分別是四面體OABC的邊OA,BC的中點,M為EF的中點,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則下列向量中與$\overrightarrow{OM}$相等的向量是( 。
A.-$\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$C.$\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$D.-$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知雙曲線C的右焦點為F,過F的直線l與雙曲線C交于不同兩點A、B,且A、B兩點間的距離恰好等于焦距,若這樣的直線l有且僅有兩條,則雙曲線C的離心率的取值范圍為(1,$\frac{1+\sqrt{17}}{4}$)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求下列各式的值:
(1)${(1.5)^{-2}}+{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+\sqrt{{{(π-4)}^2}}$+$\root{3}{{{{(π-2)}^3}}}$
(2)$2{log_3}2-{log_3}\frac{32}{9}+{log_3}8$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,設(shè)a=2,b=3,c=4.
(Ⅰ)求cosC的值;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=a(x-lnx)+$\frac{2x-1}{{x}^{2}}$.
(1)當(dāng)a=0時,求曲線y=f(x)在點P(1,1)處的切線方程;
(2)當(dāng)a>0時,討論函數(shù)f(x)的單調(diào)性;
(3)若關(guān)于x的方程f(x)=$\frac{5}{x}$-$\frac{2}{{x}^{3}}$在x∈[2,3]上有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n( mod m),例如10=2(mod 4).如圖程序框圖的算法源于我國古代聞名中外的《中國剩余定理》.執(zhí)行該程序框圖,則輸出的n等于( 。
A.20B.21C.22D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.三位男同學(xué)兩位女同學(xué)站成一排,女同學(xué)不站兩端的排法總數(shù)為( 。
A.6B.36C.48D.120

查看答案和解析>>

同步練習(xí)冊答案