10.數(shù)列{an}滿足a1=$\sqrt{3}$與an+1=[an]+$\frac{1}{\{{a}_{n}\}}$([an]與{an}分別表示an的整數(shù)部分與分數(shù)部分),則a2017=( 。
A.$3021+\sqrt{3}$B.$3024+\sqrt{3}$C.$3021+\frac{{\sqrt{3}-1}}{2}$D.$3024+\frac{{\sqrt{3}-1}}{2}$

分析 通過寫出前幾項,尋找他們之間的規(guī)律,歸納得出結論.

解答 解:a1=$\sqrt{3}$,
a2=1+$\frac{1}{\sqrt{3}-1}$=$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$(3+$\sqrt{3}$),
a3=2+$\frac{1}{\frac{\sqrt{3}}{2}-\frac{1}{2}}$=3+$\sqrt{3}$=a1+3,
a4=4+$\frac{1}{\sqrt{3}-1}$=a2+3,
a5=5+$\frac{1}{\frac{\sqrt{3}}{2}-\frac{1}{2}}$=a3+3=a1+6,

∴a2017=a2015+3=a2013+6=…=a1+3×($\frac{2017-1}{2}$)=3024+$\sqrt{3}$.
故選:B.

點評 本題考查了數(shù)列遞推關系、等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)存在實數(shù)x,使不等式f(x)+|x+2|-m≤0有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是非零向量,已知命題p:若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$;命題q:若$\overrightarrow{a}$•$\overrightarrow$=0,$\overrightarrow$•$\overrightarrow{c}$=0,則$\overrightarrow{a}$•$\overrightarrow{c}$=0,則下列命題中真命題是( 。
A.p∧qB.p∨qC.(¬p)∧(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知圓臺的上下底面半徑分別是2、4,且側面面積等于兩底面面積之和,求該圓臺的母線長和體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知a>0,-1<b<0,那么下列不等式成立的是( 。
A.a<ab<ab2B.ab<a<ab2C.ab<ab2<aD.ab2<a<ab

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若不等式${2^{2x-1}}+a>{log_{\frac{1}{2}}}x$在區(qū)間[1,2]上恒成立,則a的取值范圍是(  )
A.a<-2B.a>-2C.a<-9D.a>-9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.兩個正數(shù)a、b的等差中項是$\frac{7}{2}$,一個等比中項是2$\sqrt{3}$,且a<b,則雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率e等于( 。
A.$\frac{3}{4}$B.$\frac{15}{2}$C.$\frac{5}{4}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知拋物線C:y2=2px(p>0)的焦點為F,直線y=4與f'(x)=0軸y的交點為R,與拋物線C的交點為O,且|QF|=$\frac{5}{4}$|RQ|.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點F1與拋物線C的焦點重合,且離心率為$\frac{1}{2}$
(Ⅰ)求拋物線C和橢圓E的標準方程;
(Ⅱ)若橢圓E的長軸的兩端點為A,B,點P為橢圓上異于A,B的動點,定直線x=4與直線PA,PB分別交于M,N兩點.請問以MN為直徑的圓是否經(jīng)過x軸上的定點,若存在,求出定點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在三棱臺ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:AC⊥BF;         
(2)求證:BF⊥平面ACFD.

查看答案和解析>>

同步練習冊答案