【題目】已知拋物線: ()的焦點是橢圓: ()的右焦點,且兩曲線有公共點
(1)求橢圓的方程;
(2)橢圓的左、右頂點分別為, ,若過點且斜率不為零的直線與橢圓交于, 兩點,已知直線與相較于點,試判斷點是否在一定直線上?若在,請求出定直線的方程;若不在,請說明理由.
【答案】(1) (2) 點在定直線上
【解析】試題分析:(1)由條件易得: ,從而得到橢圓的方程;
(2)先由特殊位置定出,猜想點在直線上,由條件可得直線的斜率存在, 設(shè)直線,聯(lián)立方程,消得: 有兩個不等的實根,利用韋達(dá)定理轉(zhuǎn)化條件即可.
試題解析:
(1)將代入拋物線得
∴拋物線的焦點為,則橢圓中,
又點在橢圓上,
∴, 解得,
橢圓的方程為
(2)方法一
當(dāng)點為橢圓的上頂點時,直線的方程為,此時點, ,則直線和直線,聯(lián)立,解得,
當(dāng)點為橢圓的下頂點時,由對稱性知: .
猜想點在直線上,證明如下:
由條件可得直線的斜率存在, 設(shè)直線,
聯(lián)立方程,
消得: 有兩個不等的實根,
,
設(shè),則,
則直線與直線
聯(lián)立兩直線方程得(其中為點橫坐標(biāo))
將代入上述方程中可得,
即,
即證
將代入上式可得
,此式成立
∴點在定直線上.
方法二
由條件可得直線的斜率存在, 設(shè)直線
聯(lián)立方程,
消得: 有兩個不等的實根,
,
設(shè),則,
,
由, , 三點共線,有:
由, , 三點共線,有:
上兩式相比得
,
解得
∴點在定直線上.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】至2018年底,我國發(fā)明專利申請量已經(jīng)連續(xù)8年位居世界首位,下表是我國2012年至2018年發(fā)明專利申請量以及相關(guān)數(shù)據(jù).
總計 | ||||||||
年代代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 28 |
申請量(萬件) | 65 | 82 | 92 | 110 | 133 | 138 | 154 | 774 |
65 | 164 | 276 | 440 | 665 | 828 | 1078 | 3516 |
>
注:年代代碼1~7分別表示2012~2018.
(1)可以看出申請量每年都在增加,請問這幾年中那一年的增長率達(dá)到最高,最高是多少?
(2)建立關(guān)于的回歸直線方程(精確到0.01),并預(yù)測我國發(fā)明專利申請量突破200萬件的年份.
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近來天氣變化無常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機對人院的名幼兒進(jìn)行調(diào)查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機抽取人,抽到患傷風(fēng)感冒疾病的幼兒的概率為,
(1)請將下面的列聯(lián)表補充完整;
患傷風(fēng)感冒疾病 | 不患傷風(fēng)感冒疾病 | 合計 | |
男 | 25 | ||
女 | 20 | ||
合計 | 100 |
(2)能否在犯錯誤的概率不超過的情況下認(rèn)為患傷風(fēng)感冒疾病與性別有關(guān)?說明你的理由;
(3)已知在患傷風(fēng)感冒疾病的名女性幼兒中,有名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的名女性中,選出名進(jìn)行其他方面的排查,記選出患黃痘病的女性人數(shù)為,求的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知曲線:和曲線:,以極點為坐標(biāo)原點,極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.
(1)求曲線和曲線的直角坐標(biāo)方程;
(2)若點是曲線上一動點,過點作線段的垂線交曲線于點,求線段長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為邊長為2的菱形,∠DAB=60°,∠ADP=90°,面ADP⊥面ABCD,點F為棱PD的中點.
(1)在棱AB上是否存在一點E,使得AF∥面PCE,并說明理由;
(2)當(dāng)二面角D﹣FC﹣B的余弦值為時,求直線PB與平面ABCD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某茶樓有四類茶飲,假設(shè)為顧客準(zhǔn)備泡茶工具所需的時間互相獨立,且都是整數(shù)分鐘,經(jīng)統(tǒng)計以往為100位顧客準(zhǔn)備泡茶工具所需的時間,結(jié)果如下:
類別 | 鐵觀音 | 龍井 | 金駿眉 | 大紅袍 |
顧客數(shù)(人) | 20 | 30 | 40 | 10 |
時間(分鐘/人) | 2 | 3 | 4 | 6 |
注:服務(wù)員在準(zhǔn)備泡茶工具時的間隔時間忽略不計,并將頻率視為概率.
(1)求服務(wù)員恰好在第6分種開始準(zhǔn)備第三位顧客的泡茶工具的概率;
(2)用表示至第4分鐘末已準(zhǔn)備好了工具的顧客人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】魯班鎖是中國傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙.從外觀上看,是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對稱;六根等長的正四棱柱分成三組,經(jīng)90°榫卯起來.如圖所示,正四棱柱的高為8,底面正方形的邊長為1,將這個魯班鎖放進(jìn)一個球形容器內(nèi),則該球形容器半徑的最小值為(容器壁的厚度忽略不計)( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);.
(1)判斷在上的單調(diào)性,并說明理由;
(2)求的極值;
(3)當(dāng)時,,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com