16.已知實(shí)數(shù)x,y滿足不等式$\left\{\begin{array}{l}{y≤x+2}\\{x+y≤4}\\{y≥0}\end{array}\right.$,則x+2y的最大值為7.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{y≤x+2}\\{x+y≤4}\\{y≥0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{y=x+2}\\{x+y=4}\end{array}\right.$,解得A(1,3),
令z=x+2y,化為y=-$\frac{x}{2}+\frac{z}{2}$,由圖可知,當(dāng)直線y=-$\frac{x}{2}+\frac{z}{2}$過(guò)A時(shí),直線在y軸上的截距最大,z有最大值為7.
故答案為:7.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.“${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$”是“l(fā)og2a>log2b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知a∈R,則“a<0”是“|x|+|x+1|>a恒成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知曲線C:y=x2+2x在點(diǎn)(0,0)處的切線為l,則由C,l以及直線x=1圍成的區(qū)域面積等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知α為銳角,若cos(α+$\frac{π}{4}$)=$\frac{5}{13}$,則sinα=( 。
A.$\frac{5\sqrt{2}}{13}$B.$\frac{12}{13}$C.$\frac{7\sqrt{2}}{26}$D.$\frac{17\sqrt{2}26}{\;}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,某數(shù)學(xué)興趣小組為了測(cè)量西安大雁塔高AB,選取與塔底B在同一水平面
內(nèi)的兩個(gè)測(cè)點(diǎn)C與D.測(cè)得∠BCD=105°,∠BDC=45°,CD=26.4m,并在C點(diǎn)測(cè)得塔頂A的仰角為60°,則塔高AB=64.68m.($\sqrt{6}$≈2.45,結(jié)果精確到0.01).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若復(fù)數(shù)z滿足(2-i)z=1+i,則復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,已知直線l:y=kx+1(k>0)關(guān)于直線y=x+1對(duì)稱的直線為l1,直線l,l1與橢圓E:$\frac{x^2}{4}+{y^2}$=1分別交于點(diǎn)A、M和A、N,記直線l1的斜率為k1
(Ⅰ)求k•k1的值;
(Ⅱ)當(dāng)k變化時(shí),試問(wèn)直線MN是否恒過(guò)定點(diǎn)?若恒過(guò)定點(diǎn),求出該定點(diǎn)坐標(biāo);若不恒過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)$f(x)=\left\{\begin{array}{l}-x+3a\\-{(x+1)^2}+2\end{array}\right.$$\begin{array}{l}x<0\\ x≥0\end{array}$,是R上的減函數(shù),則a的取值范圍是( 。
A.(0,1)B.$[\frac{1}{3}$,+∞)C.(0,$\frac{1}{3}]$D.(0,$\frac{2}{3}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案