13.電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
非體育迷體育迷合計
301545
451055
合計7525100
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X分布列,期望E(X)和方差D(X).
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

分析 (1)根據(jù)所給的頻率分布直方圖得出數(shù)據(jù)列出列聯(lián)表,再代入公式計算得出K2,與3.841比較即可得出結(jié)論;
(2)由題意,用頻率代替概率可得出從觀眾中抽取到一名“體育迷”的概率是為$\frac{1}{4}$.由于X~B(3,$\frac{1}{4}$),從而給出分布列,再由公式計算出期望與方差即可

解答 解:(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而2×2列聯(lián)表如下:

非體育迷體育迷合計
301545
451055
合計7525100
將2×2列聯(lián)表中的數(shù)據(jù)代入公式計算,得${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$=$\frac{100}{33}≈3.030$.
因為3.030<3.841,所以沒有理由認(rèn)為“體育迷”與性別有關(guān).
(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率為$\frac{1}{4}$.
由題意X~B(3,$\frac{1}{4}$),從而X的分布列為
X0123
P$\frac{27}{64}$$\frac{27}{64}$$\frac{9}{64}$$\frac{1}{64}$
$E(X)=np=3×\frac{1}{4}=\frac{3}{4}$,D(X)=np(1-p)=$3×\frac{1}{4}×\frac{3}{4}=\frac{9}{16}$.

點評 本題考查獨立性檢驗的運用及期望與方差的求法,頻率分布直方圖的性質(zhì),涉及到的知識點較多,有一定的綜合性,難度不大,是高考中的易考題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對于函數(shù)f(x),若在定義域x內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.p:f(x)=m+2x為定義在[-1,1]上的“局部奇函數(shù)”;q:曲線g(x)=x2+(5m+1)x+1與x軸交于不同的兩點;若“p∧q”為假命題,“p∨q”為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|=1$,($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,$({2\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,則向量$\overrightarrow a$,$\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,則$\frac{y+1}{x}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四邊形ABCD是梯形.四邊形CDEF是矩形.且平面ABCD⊥平面CDEF,∠BAD=90°,AB∥CD,M是線段AE上的動點.
(Ⅰ)試確定點M的位置,使AC∥平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,且∠AED=45°,AE=$\sqrt{2}$,AD=$\frac{1}{2}$CD,連接AF,求三棱錐M-ADF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短軸長為2,離心率為$\frac{{\sqrt{2}}}{2}$,直線l:y=kx+m(k≠0)與橢圓C交于A,B兩點,且線段AB的垂直平分線通過點$({0,-\frac{1}{2}})$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)△AOB(O為坐標(biāo)原點)面積取最大值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=-x2+6x+a2-1,那么下列式子中正確的是( 。
A.$f(\sqrt{2})<f(3)<f(4)$B.$f(3)<f(\sqrt{2})<f(4)$C.$f(\sqrt{2})<f(4)<f(3)$D.$f(3)<f(4)<f(\sqrt{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知m∈R,i為虛數(shù)單位,若$\frac{m+i}{1-2i}$∈R,則實數(shù)m的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}滿足a1=3且an+1=4an+3(n∈N+),則數(shù)列{an}的通項公式為an=4n-1.

查看答案和解析>>

同步練習(xí)冊答案