分析 作出不等式組對應(yīng)的平面區(qū)域,利用兩點間的斜率公式進(jìn)行求解即可.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖,
$\frac{y+1}{x}$的幾何意義是區(qū)域內(nèi)的點到定點D(0,-1)的斜率,
由圖象知BD的斜率最小,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-3=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即B(1,2),
此時BD的斜率k=$\frac{2+1}{1}$=3,
故答案為:3
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用兩點間的斜率公式以及數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲單位 | 87 | 88 | 91 | 91 | 93 |
乙單位 | 85 | 89 | 91 | 92 | 93 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥b,a∥α,則b∥α | B. | 若α⊥β,a∥α,則a⊥β | C. | 若α⊥β,a⊥β,則a∥α | D. | 若α∥β,m⊥α,則m⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
非體育迷 | 體育迷 | 合計 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{2}$ | 2π | $\frac{7π}{2}$ | 5π | $\frac{13π}{2}$ |
f(x) | 0 | 2 | 0 | -2 | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com