1.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,則$\frac{y+1}{x}$的最小值為3.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用兩點間的斜率公式進(jìn)行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖,
$\frac{y+1}{x}$的幾何意義是區(qū)域內(nèi)的點到定點D(0,-1)的斜率,
由圖象知BD的斜率最小,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-3=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即B(1,2),
此時BD的斜率k=$\frac{2+1}{1}$=3,
故答案為:3

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用兩點間的斜率公式以及數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了普及環(huán)保知識,共建美麗宜居城市,某市組織了環(huán)保知識競賽,隨機(jī)抽取了甲、乙兩單位中各5名職工的成績(單位:分)如下表:
甲單位8788919193
乙單位8589919293
(1)根據(jù)表中的數(shù)據(jù),分別求出甲、乙兩個單位這5名職工成績的平均數(shù)和方差,并判斷哪個單位的職工對環(huán)保知識掌握得更好;(參考公式:樣本數(shù)據(jù)x1,x2,…,xn的方差:${s^2}=\frac{1}{n}[{({x_1}-\overline x)^2}+{({x_2}-\overline x)^2}+…+{({x_n}-\overline x)^2}]$,其中$\overline x$為樣本平均數(shù))
(2)用簡單隨機(jī)抽樣法從乙單位5名職工中抽取2名,求抽取的2名職工的成績差的絕對值至少是4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a,b是兩條不同的直線,α,β是兩個不同的平面,下列命題正確的是(  )
A.若a∥b,a∥α,則b∥αB.若α⊥β,a∥α,則a⊥βC.若α⊥β,a⊥β,則a∥αD.若α∥β,m⊥α,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD的平行四邊形,∠ADC=60°,$AB=\frac{1}{2}AD$,PA⊥面ABCD,E為PD的中點.
(Ⅰ)求證:AB⊥PC
(Ⅱ)若PA=AB=$\frac{1}{2}AD=2$,求三棱錐P-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.現(xiàn)有12張不同的卡片,其中紅色、黃色、藍(lán)色、綠色卡片各3張,從中任取3張,要求這3張卡片不能是同一種顏色,且紅色卡片至多1張,不同取法的種數(shù)為189.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$則z=3x-y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
非體育迷體育迷合計
301545
451055
合計7525100
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X分布列,期望E(X)和方差D(X).
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=x2-2bx+3在x∈[-1,2]時有最小值1,則實數(shù)b=-$\frac{3}{2}$或$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某同學(xué)用“五點法”畫函數(shù)$f(x)=2sin(\frac{1}{3}x-\frac{π}{6})$的圖象,先列表,并填寫了一些數(shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{2}$
$\frac{7π}{2}$
$\frac{13π}{2}$
f(x)020-20
(1)請將表格填寫完整,并畫出函數(shù)f(x)在一個周期內(nèi)的簡圖;

(2)寫出如何由f(x)=sinx的圖象變化得到$f(x)=2sin(\frac{1}{3}x-\frac{π}{6})$的圖象,要求用箭頭的形式寫出變化的三個步驟.

查看答案和解析>>

同步練習(xí)冊答案