3.已知m∈R,i為虛數(shù)單位,若$\frac{m+i}{1-2i}$∈R,則實(shí)數(shù)m的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),結(jié)合已知條件列出方程,求解即可得答案.

解答 解:∵$\frac{m+i}{1-2i}$=$\frac{(m+i)(1+2i)}{(1-2i)(1+2i)}=\frac{m-2+(1+2m)i}{5}$=$\frac{m-2}{5}+\frac{1+2m}{5}i$∈R,
∴$\frac{1+2m}{5}=0$,即m=$-\frac{1}{2}$.
則實(shí)數(shù)m的值為:$-\frac{1}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)a,b是兩條不同的直線(xiàn),α,β是兩個(gè)不同的平面,下列命題正確的是( 。
A.若a∥b,a∥α,則b∥αB.若α⊥β,a∥α,則a⊥βC.若α⊥β,a⊥β,則a∥αD.若α∥β,m⊥α,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.電視傳媒公司為了解某地區(qū)電視觀(guān)眾對(duì)某類(lèi)體育節(jié)目的收視情況,隨機(jī)抽取了100名觀(guān)眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀(guān)眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
非體育迷體育迷合計(jì)
301545
451055
合計(jì)7525100
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀(guān)眾稱(chēng)為“體育迷”.
(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀(guān)眾中,采用隨機(jī)抽樣方法每次抽取1名觀(guān)眾,抽取3次,記被抽取的3名觀(guān)眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X分布列,期望E(X)和方差D(X).
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=x2-2bx+3在x∈[-1,2]時(shí)有最小值1,則實(shí)數(shù)b=-$\frac{3}{2}$或$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B點(diǎn)在A(yíng)M上,D點(diǎn)在A(yíng)N上,且對(duì)角線(xiàn)MN過(guò)點(diǎn)C,已知AB=2米,AD=1米.
(1)要使矩形AMPN的面積大于9平方米,則DN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)當(dāng)DN的長(zhǎng)度為多少時(shí),矩形花壇AMPN的面積最。坎⑶蟪鲎钚≈担

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知在正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別是AB,BB1,B1C1的中點(diǎn),則過(guò)這三點(diǎn)的截面圖的形狀是( 。
A.三角形B.四邊形C.五邊形D.六邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列命題中,真命題的個(gè)數(shù)為( 。
①若a,b,c∈R則“a>b”是“ac2>bc2”成立的充分不必要條件;
②若橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,且弦AB過(guò)點(diǎn)F1,則△ABF2的周長(zhǎng)為20.
③若命題“¬p”與命題“p或q”都是真命題,則命題q一定是真命題;
④若命題p:?x∈R,x2+x+1<0,則¬p:?x∈R,x2+x+1≥0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)$f(x)=2sin(\frac{1}{3}x-\frac{π}{6})$的圖象,先列表,并填寫(xiě)了一些數(shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{2}$
$\frac{7π}{2}$
$\frac{13π}{2}$
f(x)020-20
(1)請(qǐng)將表格填寫(xiě)完整,并畫(huà)出函數(shù)f(x)在一個(gè)周期內(nèi)的簡(jiǎn)圖;

(2)寫(xiě)出如何由f(x)=sinx的圖象變化得到$f(x)=2sin(\frac{1}{3}x-\frac{π}{6})$的圖象,要求用箭頭的形式寫(xiě)出變化的三個(gè)步驟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若cosαtanα>0且$\frac{sinα}{tanα}<0$,則角α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

同步練習(xí)冊(cè)答案